Commercial CFD Code Validation for Simulation of Heavy-Vehicle External Aerodynamics

Author(s):  
W. David Pointer ◽  
Tanju Sofu ◽  
David Weber

The issue of energy economy in transportation has grown beyond traditional concerns over environment, safety and health to include new concerns over national and international security. In collaboration with the U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies’ Working Group on Aerodynamic Drag of Heavy Vehicles, Argonne National Laboratory is investigating the accuracy of aerodynamic drag predictions from commercial Computational Fluid Dynamics (CFD) Software. In this validation study, computational predictions from two commercial CFD codes, Star-CD [1] and PowerFLOW [2], will be compared with detailed velocity, pressure and force balance data from experiments completed in the 7 ft. by 10 ft. wind tunnel at NASA Ames [3, 4] using a Generic Conventional Model (GCM) that is representative of typical current-generation tractor-trailer geometries.

Author(s):  
Kun Chen ◽  
Hanchung Tsai ◽  
Bud Fabian ◽  
Yung Liu ◽  
James Shuler

A temperature-monitoring system based on radiofrequency identification (RFID) has been developed for extending the maintenance period of the nuclear material packaging for storage and transportation. The system consists of tags, readers, and application software. The tag, equipped with a temperature sensor, is attached to the exterior of a package. The application software enables remote reading, via radio waves, of the temperature from the sensor in the tag. The system reports any temperature violations immediately via e-mail or text message, and/or posts the alarm on a secure website. The system can monitor thousands of packages and record individual temperature histories in a database. The first type of packaging that will benefit from the RFID technology is Model 9977, which has been certified by the U.S. Department of Energy (DOE) to ship and store fissile materials such as plutonium and uranium. The recorded data can be correlated to the temperature of the containment O-ring seals, based on the decay heat load of the contents. Accelerated aging studies of the Viton® GLT O-rings have shown that temperature is one of the key parameters governing the life of the O-ring seals, which maintain the integrity of the containment boundary of the package. Use of the RFID temperature-monitoring system to verify that the surface temperature remains below a certain threshold will make it possible to extend the leak-test period of the package from one year to up to five years. The longer leak-rate testing interval will yield a cost savings of up to $10,000 per package over five years. This work was conducted by Argonne National Laboratory in support of the DOE Packaging Certification Program, Office of Environmental Management, Office of Packaging and Transportation (EM-63).


2021 ◽  
Author(s):  
Leroy Walston ◽  
Heidi Hartmann

<p>Concomitant with the increase in solar photovoltaic (PV) energy development over the past decade has been the increasing emphasis on land sharing strategies that maximize the land use efficiency of solar energy developments.  Many of these strategies focus on improving the compatibility of solar energy development with other co-located land uses (e.g., agriculture) and by improving several ecosystem services that could have natural, societal, and industrial benefits. One such land opportunity is the restoration and management of native grassland vegetation beneath ground-mounted PV solar energy facilities, which has the potential to restore native habitat to conserve biodiversity and restore previously altered ecosystem services (e.g., natural pollination services). This presentation will discuss various assessment and modeling approaches to evaluate the scale and magnitude of the ecosystem services provided by different vegetation management strategies at solar PV energy development sites. This work demonstrates how multifunctional land uses in energy systems represents a win-win solution for energy and the environment by optimizing energy-food-ecology synergies. This work was conducted by Argonne National Laboratory for the U.S. Department of Energy Solar Energy Technologies Office under Contract No. DE-AC02-06CH11357.</p>


Author(s):  
John A. Michelbacher ◽  
Carl E. Baily ◽  
Daniel K. Baird ◽  
S. Paul Henslee ◽  
Collin J. Knight ◽  
...  

The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m3 (86,000 gallons) of sodium and the secondary system contained 50 m3 (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated layup plan defining the system end state, as well as instructions for achieving the layup condition. A goal of system-by-system layup is to minimize surveillance and maintenance requirements during the interim period between deactivation and decommissioning. The plans also establish document archival of not only all the closure documents, but also the key plant documents (P&IDs, design bases, characterization data, etc.) in a convenient location to assure the appropriate knowledge base is available for decommissioning, which could occur decades in the future.


Author(s):  
Mary D. McDermott ◽  
Charles D. Griffin ◽  
Daniel K. Baird ◽  
Carl E. Baily ◽  
John A. Michelbacher ◽  
...  

The Experimental Breeder Reactor - II (EBR-II) at Argonne National Laboratory - West (ANL-W) was shutdown in September 1994 as mandated by the United States Department of Energy. Located in eastern Idaho, this sodium-cooled reactor had been in service since 1964, and was a test facility for fuels development, materials irradiation, system and control theory tests, and hardware development. The EBR-II termination activities began in October 1994, with the reactor being maintained in an industrially and radiologically safe condition for decommissioning. With the shutdown of EBR-II, its sodium coolant became a waste necessitating its reaction to a disposal form. A Sodium Process Facility (SPF), designed to convert sodium to 50 wt% sodium hydroxide, existed at the ANL-W site, but had never been operated. The SPF was upgraded to current standards and codes, and then modified in 1998 to convert the sodium to 70 wt% sodium hydroxide, a substance that solidifies at 65°C (150°F) and is acceptable for burial as low level radioactive waste in Idaho. In December 1998, the SPF began operations. Working with sodium and highly concentrated sodium hydroxide presented some unique operating and maintenance conditions. Several lessons were learned throughout the operating period. Processing of the 330 m3 (87,000 gallons) of EBR-II primary sodium, 50 m3 (13,000 gallons) of EBR-II secondary sodium, and 290 m3 (77,000 gallons) of Fermi-1 primary sodium was successfully completed in March 2001, ahead of schedule and within budget.


Author(s):  
A. V. Kuzmin ◽  
A. V. Radkevich ◽  
V. P. Petrushkevich ◽  
N. D. Kuzmina

The aim of the current work is to perform a probabilistic dose assessment to quantify the relative importance of the source data uncertainties contribution towards the uncertainty estimates of collective and maximum individual doses of personnel during decommissioning of a storage facility. A probabilistic approach to the analysis of dose loads, including the analysis of sensitivity and uncertainty with respect to the input parameters of the used calculation models of dose assessment, allows to determine the most sensitive parameters, inaccuracies in the task of which lead to significant uncertainties in the estimates of dose loads on personnel and, therefore, require more accurate determination of conservative boundary values in deterministic analysis and safety justification. The calculations were performed by applying the code RESRAD-BUILD 3.50, developed by the Argonne National Laboratory of the US Department of Energy. The obtained results allow us to rank the parameters of the computational model according to the degree of their influence on the uncertainty of the final estimates of the dose loads on personnel, to develop recommendations for optimizing dose loads when performing radiation-hazardous work during nuclear facilities decommissioning.


Author(s):  
Christopher J. Golecki ◽  
Christopher D. Monaco ◽  
Benjamin J. Sattler

EcoCAR 2: Plugging into the Future is an Advanced Vehicle Technology Competition managed by the U.S. Department of Energy at Argonne National Laboratory. The competition challenges 15 universities across North America to reduce the environmental impact of a production vehicle without compromising performance, safety and consumer acceptability. To meet this goal, the Pennsylvania State University Advanced Vehicle Team has designed a series plug-in hybrid electric vehicle (PHEV) capable of achieving a 40 mile all-electric range. An auxiliary power unit (750 cc two-cylinder engine converted to run on E85 fuel) provides extended range greater than 200 miles. A rigorous development process has been followed to provide a control system that meets the safety, performance and fuel economy targets, including fault mitigation. This paper summarizes the control system development strategy, starting with vehicle component selection. The strategies used to develop a control algorithm and plant model in parallel are described. Extensive testing is performed throughout the vehicle development process, including both software-in-the-loop (SiL), hardware-in-the-loop (HiL), and in-vehicle testing. In addition, it will be shown how pertinent testing data plays a crucial role in further plant model developments.


Author(s):  
Omesh Chopra ◽  
Dwight Diercks ◽  
David Ma ◽  
Vikram Shah ◽  
Shiu-Wing Tam ◽  
...  

The cancellation of the Yucca Mountain repository program in the Unites States raises the prospect of very long-term storage (i.e., >120 years) and deferred transportation of used fuel at the nuclear power plant sites. While long-term storage of used nuclear fuel in dry cask storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSIs) is already a standard practice among U.S. utilities, recent rule-making activities of the U.S. Nuclear Regulatory Commission (NRC) indicated additional flexibility for the NRC licensees of ISFSIs and certificate holders of the DCSSs to request initial and renewal terms for up to 40 years. The proposed rule also adds a requirement that renewal applicants must provide descriptions of aging management programs (AMPs) and time-limited aging analyses (TLAAs) to ensure that the structures, systems, and components (SSCs) that are important to safety in the DCSSs will perform as designed under the extended license terms. This paper examines issues related to managing aging effects on DCSSs for very long-term storage (VLTS) of used fuels, capitalizing on the extensive knowledge and experience accumulated from the work on aging research and life cycle management at Argonne National Laboratory (ANL) over the last 30 years. The technical basis for acceptable AMPs and TLAAs is described, as are generic AMPs and TLAAs that are being developed by Argonne under the support of the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign for R&D on extended long-term storage and transportation.


2010 ◽  
Vol 72 ◽  
pp. 1-11 ◽  
Author(s):  
Ken Natesan ◽  
Zuo Tao Zeng

The U.S. Department of Energy (DOE) Office of Fossil Energy is intensely promoting research and development of materials for advanced steam cycle systems and for oxy-fuel combustion systems. At Argonne National Laboratory, we have conducted studies to evaluate the corrosion performance of candidate structural alloys in coal-ash and in steam environments, in support of advanced steam cycle systems. The laboratory tests simulate the combustion atmosphere of advanced steam-cycle systems and three deposit chemistries that included ash constituents, alkali sulfates, and NaCl. Corrosion rate data will be presented for several Fe- and Ni-base alloys along with the mechanistic understanding of the corrosion processes. In the study on materials for oxy-fuel applications, we have evaluated the corrosion performance of the materials in CO2, steam, and in steam-CO2 mixtures. Materials selected for the study include intermediate-chromium ferritic steels, Fe-Cr-Ni heat-resistant alloys, and nickel-based superalloys. Information will be presented for materials exposed at temperatures between 650 and 950°C for times up to 10,000 h. In the ongoing experiments, we have incorporated low levels of sulfur and chlorine compounds (in addition to CO2 and steam) in the exposure environment to establish the role of second/third reactant on the scaling, internal penetration, and long term performance of the structural alloys.


Sign in / Sign up

Export Citation Format

Share Document