Energy Loss in Snow-Water Mixture Flow

Author(s):  
Mikio Sasaki ◽  
Takahiro Takeuchi ◽  
Hiroshi Takahashi

Energy losses in the solid-water mixture flow where the density of solid is nearly equal to that of fluid were observed in horizontal pipelines. The observation was carried out to investigate the influence that the specific gravity of the solid particles exerted on the energy loss. A relative friction factor based on the friction factor of the pure water flow becomes larger as the solid concentration increases in the mixture flow of solid particles with the specific gravity 0.86 and 1.04. The relative friction factor is given with the Froude number, the solid concentration and the specific gravity of solid.

2014 ◽  
Vol 62 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Pavel Vlasák ◽  
Zdeněk Chára ◽  
Jan Krupička ◽  
Jiří Konfršt

Abstract The effect of solid concentration and mixture velocity on the flow behaviour, pressure drops, and concentration distribution of coarse particle-water mixtures in horizontal, vertical, and inclined smooth stainless steel pipes of inner diameter D = 100 mm was experimentally investigated. Graded basalt pebbles were used as solid particles. The study revealed that the coarse-grained particle-water mixtures in the horizontal and inclined pipes were significantly stratified. The solid particles moved principally in a layer close to the pipe invert; however for higher and moderate flow velocities, particle saltation became the dominant mode of particle conveyance. Frictional pressure drops in the horizontal pipe were found to be markedly higher than in the vertical pipe, while the frictional pressure drops in the ascending pipe increased with inclination angle up to about 30°.


1989 ◽  
Vol 5 (4) ◽  
pp. 3-15
Author(s):  
HIROSHI TAKAHASHI ◽  
MIKIO SASAKI ◽  
TOSHIO KAWASHIMA

1986 ◽  
Vol 29 (253) ◽  
pp. 2156-2160
Author(s):  
Masataka SHIRAKASHI ◽  
Atsushi KOSHIO ◽  
Shoichi WAKlYA

1985 ◽  
Vol 51 (471) ◽  
pp. 3782-3785
Author(s):  
Masataka SHIRAKASHI ◽  
Atsushi KOSHIO ◽  
Shoichi WAKIYA

1987 ◽  
Vol 53 (493) ◽  
pp. 2791-2799
Author(s):  
Yasushi TOKUNAGA ◽  
Atsushi KOSHIO ◽  
Tsuyoshi HASHIMOTO ◽  
Masataka SHIRAKASHI ◽  
Shoichi WAKIYA
Keyword(s):  

2017 ◽  
Vol 65 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Pavel Vlasak ◽  
Zdenek Chara ◽  
Jiri Konfrst

AbstractNarrow particle size distribution basalt pebbles of mean particle size 11.5 mm conveyed by water in the pipe sections of different inclination were investigated on an experimental pipe loop, consisting of smooth stainless steel pipes of inner diameterD= 100 mm. Mixture flow-behaviour and particles motion along the pipe invert were studied in a pipe viewing section, the concentration distribution in pipe cross-section was studied with the application of a gamma-ray densitometer. The study refers to the effect of mixture velocity, overall concentration, and angle of pipe inclination on chord-averaged concentration profiles and local concentration maps, and flow behaviour of the coarse particle-water mixtures. The study revealed that the coarse particle-water mixtures in the inclined pipe sections were significantly stratified, the solid particles moved principally close to the pipe invert, and for higher and moderate flow velocities particle saltation becomes the dominant mode of particle conveying.


2014 ◽  
Vol 70 (5) ◽  
pp. 871-877 ◽  
Author(s):  
Fahri Ozkan ◽  
M. Cihat Tuna ◽  
Ahmet Baylar ◽  
Mualla Ozturk

Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.


Author(s):  
Chun K. Kwok ◽  
Matthew M. Asada ◽  
Jonathan R. Mita ◽  
Weilin Qu

This paper presents an experimental study of single-phase heat transfer characteristics of binary methanol-water mixtures in a micro-channel heat sink containing an array of 22 microchannels with 240μm × 630μm cross-section. Pure water, pure methanol, and five methanol-water mixtures with methanol molar fraction of 16%, 36%, 50%, 63% and 82% were tested. Key parametric trends were identified and discussed. The experimental study was complemented by a three-dimensional numerical simulation. Numerical predictions and experimental data are in good agreement with a mean absolute error (MAE) of 0.87%.


Author(s):  
Jinkwan Song ◽  
Jong Guen Lee

Using a mixture of water and diesel fuel is considered a way to reduce gas emissions including NOx and COx in the gas turbine. This paper presents experimental results on spray characteristics of the water-diesel fuel mixture in an air crossflow. A plain-orifice type injector of 0.508 mm in diameter is employed in the research. Pure water, pure diesel fuel, and water-diesel fuel mixtures with different mixing ratios are used to compare their spray characteristics. In order to observe spray behaviors in different breakup regimes, Weber numbers for water of 30 and 125 are chosen as the operating condition and the corresponding Weber numbers for diesel fuel at the same conditions are 92 and 382, respectively. Momentum flux ratios are 10 and 20. A tee connection and a subsequent static mixer are employed at upstream of fuel injector to mix two liquids. Phase Doppler Particle Analyzer (PDPA) measurement is performed to measure droplet distributions and mean drop size at various mixture ratios, and planar laser induced fluorescence (PLIF) technique with dyeing either diesel or water is used to look into the primary breakup process. PDPA data show that the spray characteristics of water-diesel fuel mixtures such as mean drop size and number density distribution can be predicted from the measured drop size distribution of pure fluids by weighting those quantities by mass fraction of each fluid, indicating that the water and diesel are injected alternately without significant mixing between the two fluids. A short transition of liquid flow from water-to-diesel or diesel-to-water produces small fraction of relatively bigger droplets.


Sign in / Sign up

Export Citation Format

Share Document