mangrove root
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Beibei Liu ◽  
Lin Wu ◽  
Pan Pan ◽  
Ruilong Li ◽  
Bigui Lin

Root exudates play a pivotal role in the behaviors of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments, but the knowledge of how mangrove root exudates response to PAHs pollutants is limited. This study examined the root exudates of Bruguiera gymnorrhiza (L.) (B. gymnorrhiza) under exposure in phenanthrene, pyrene, and benzo[a]pyrene solution through a 45 days hydroponic cultivation. The results showed that the root exudates of B. gymnorrhiza were mainly hydrocarbon compounds. Tartaric acid was the dominant low molecular weight organic acids (LMWOAs) in root exudates. Under PAHs stress, the proportion of hydrocarbon compounds in root exudates decreased, while the proportion of amide compounds increased. At the first 15 days exposure, the amounts of dissolved organic carbon, soluble total sugars, total organic acids and LWMOAs all increased and reached the maximum values, subsequently, the amounts of root exudates had dropped. The degradation rates of PAHs followed the sequence of phenanthrene > pyrene > benzo [a] pyrene, and the presence of root exudates can significantly enhance the degradation of PAHs. The results illustrated that PAHs stress can significantly change the concentrations and species of root exudates. This study provides the scientific reference for understanding the ability of B. gymnorrhiza response to PAHs stress.


2022 ◽  
Vol 7 ◽  
Author(s):  
Nobuhito Mori ◽  
Che-Wei Chang ◽  
Tomomi Inoue ◽  
Yasuaki Akaji ◽  
Ko Hinokidani ◽  
...  

Mangroves are able to attenuate tsunamis, storm surges, and waves. Their protective function against wave disasters is gaining increasing attention as a typical example of the green infrastructure/Eco-DRR (Ecosystem-based Disaster Risk Reduction) in coastal regions. Hydrodynamic models commonly employed additional friction or a drag forcing term to represent mangrove-induced energy dissipation for simplicity. The well-known Morison-type formula (Morison et al. 1950) has been considered appropriate to model vegetation-induced resistance in which the information of the geometric properties of mangroves, including the root system, is needed. However, idealized vegetation configurations mainly were applied in the existing numerical models, and only a few field observations provided the empirical parameterization of the complex mangrove root structures. In this study, we conducted field surveys on the Iriomote Island of Okinawa, Japan, and Tarawa, Kiribati. We measured the representative parameters for the geometric properties of mangroves, Rhizophora stylosa, and their root system. By analyzing the data, significant correlations for hydrodynamic modeling were found among the key parameters such as the trunk diameter at breast height (DBH), the tree height H, the height of prop roots, and the projected areas of the root system. We also discussed the correlation of these representative factors with the tree age. These empirical relationships are summarized for numerical modeling at the end.


2022 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Sathy A. Naidu ◽  
Kandasamy Kathiresan ◽  
Jeffrey H. Simonson ◽  
Arny L. Blanchard ◽  
Christian J. Sanders ◽  
...  

Differences in grain size, total organic carbon (OC), total nitrogen (TN), OC/TN ratios, and stable isotope (δ13C and δ15N) were assessed in sediments from areas covered by mangrove and saltmarsh vegetation within Pichavaram estuary (Southeast India). The mean percentage contents of silt and clays (70 vs. 19%), OC (5.7 vs. 2.0%), and TN (0.39 vs. 0.14%) were consistently higher in the mangrove as compared to those observed in the saltmarsh tidal zone. These differences may obey the higher deposition and retention of fine particles in the presence of a mangrove root system that may facilitate the accumulation and preservation of organic matter within these sedimentary systems. Further, higher OC and TN contents were associated to higher terrestrial or mangrove-derived organic matter contribution with lighter δ13C signatures (−26.0‰) in both sedimentary tidal zones, whereas lower OC and TN contents were associated to heavier δ13C signatures. This study is in agreement with previous studies which indicate that the presence of wetland vegetation may increase the carbon and nutrient storage capacity within estuarine ecosystems, highly relevant information for the establishment of further conservation strategies for blue carbon ecosystems at global scales.


2021 ◽  
Vol 10 (2) ◽  
pp. 117-121
Author(s):  
Made Dharmesti Wijaya ◽  
Anak Agung Gede Indraningrat

The increasing rate of antimicrobial resistance in the past decades has motivated the search for novel antibacterial compounds to overcome infectious diseases. Among diverse natural sources, mangrove ecosystems offer untapped sources of biological active compounds for future antibacterial medicine. This research was aimed to evaluate antibacterial activities of crude extracts of four dominant mangrove plants from the Ngurah Rai Mangrove Forest namely Rhizophora mucronata, Avicennia marina, Rhizophora apiculata, and Sonneratia alba. Roots of these four plants were extracted using methanol, chloroform, and n-hexane. These crude extracts were tested against two Gram positive bacteria (Staphylococcus aureus and Streptococcus mutans) and two Gram negative bacteria (Escherichia coli dan Klebsiella pneumoniae) by disc difussion assay. We found that 3 mg/mL of N-hexane crude extracts from R. apiculata yielded the highest zone of inhibition of 8.64 mm against S. aureus. While, 3 mg/mL of chloroform crude extract of R. apiculata yielded the highest inhibition of 19.83 mm against S. mutans. Unfortunately, no zone of inhibition was observed when crude extracts were tested against Gram negative indicator strains. Our results indicate that the root crude extracts of R. apiculata yielded the highest zone of inhibition against Gram positive indicator strains compared to root crude extracts of R. mucronata, S. alba, and A. marina. Further research is required to determine the antibacterial activities of the mangrove crude extracts against other bacterial indicator strains to determine their spectrum of activities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengyuan Zhou ◽  
Ruiwen Hu ◽  
Yanmei Ni ◽  
Wei Zhuang ◽  
Zhiwen Luo ◽  
...  

Plant roots in soil host a repertoire of bacteria and fungi, whose ecological interactions could improve their functions and plant performance. However, the potential microbial interactions and underlying mechanisms remain largely unknown across the soil-mangrove root interface. We herein analyzed microbial intra- and inter-domain network topologies, keystone taxa, and interaction-related genes across four compartments (non-rhizosphere, rhizosphere, episphere, and endosphere) from a soil-mangrove root continuum, using amplicon and metagenome sequencing technologies. We found that both intra- and inter-domain networks displayed notable differences in the structure and topology across four compartments. Compared to three peripheral compartments, the endosphere was a distinctive compartment harboring more dense co-occurrences with a higher average connectivity in bacterial-fungal network (2.986) than in bacterial (2.628) or fungal network (2.419), which could be related to three bacterial keystone taxa (Vibrio, Anaerolineae, and Desulfarculaceae) detected in the endosphere as they are known to intensify inter-domain associations with fungi and stimulate biofilm formation. In support of this finding, we also found that the genes involved in cell-cell communications by quorum sensing (rhlI, lasI, pqsH, and lasR) and aerobic cobamide biosynthesis (cobG, cobF, and cobA) were highly enriched in the endosphere, whereas anaerobic cobamide biosynthesis (encoded by cbiT and cbiE) was dominant in three peripheral compartments. Our results provide genetic evidence for the intensified bacterial-fungal associations of root endophytes, highlighting the critical role of the soil-root interface in structuring the microbial inter-domain associations.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 966
Author(s):  
Sarawan Hongwiset ◽  
Chadtip Rodtassana ◽  
Sasitorn Poungparn ◽  
Suthathip Umnouysin ◽  
Akira Komiyama

Mangrove ecosystems under tropical monsoon climates experience changes in environmental factors, especially seasonal variations in salinity. These changes might have direct influences on the mangrove root sphere, which plays an important role in carbon dynamics and supports mangrove growth. We aimed to elucidate how the soil properties including salinity and nutrient budget affect the mangrove roots in the wet and dry seasons across the mangrove zonation (Avicennia, Rhizophora, and Xylocarpus zones). This area is in a secondary forest at the Trat River estuary, eastern Thailand. Root mass was observed at 0–10 and 10–20 cm depths across all zones and the living roots were separated into diameter classes. The soil water salinity was measured at a 10 cm depth. We analyzed the nitrogen, phosphorus, and carbon contents in the roots and soil. Spatiotemporal changes occurred due to the vegetation zonation and the variations in salinity and the content of soil available phosphorus that caused different root sphere conditions along the distance from the river. The highest root biomass was found in the riverward Avicennia zone, which was 4.8 times higher than that of the inland Xylocarpus zone in the wet season. The root necromass distribution along the zonation showed an opposite trend to that of biomass. Among seasons, the root size-class proportion differed, with high fine roots observed during the wet season. We confirmed that the root sphere showed both spatial and temporal heterogeneity. Mangrove roots, especially fine roots, interacted with changing salinity, inundation regime, and biological processes evoked by microtopographic gradients as a consequence of mangrove zonation and seasonal rainfall. Our findings indicate how the root sphere differed by specific vegetation structure in this mangrove forest. Therefore, these might provide an ecological perspective for the mangrove rehabilitation plans to facilitate below-ground carbon stock.


2021 ◽  
Author(s):  
Amirkhosro Kazemi ◽  
Eduardo Castillo ◽  
Ruben Hortensius ◽  
Stamatios Pothos ◽  
Oscar Curet

Eng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 229-248
Author(s):  
Adam Ado Sabari ◽  
Ashley Richard Oates ◽  
Shatirah Akib

Rising sea levels, strong wave currents and destructive human activities put coastal areas at risk of erosion and potential flooding. Several countermeasures have been introduced—both artificial and natural—to tackle the issue. This study investigated the effectiveness of the use of hybrid polymer-made artificial Xbloc walls and mangrove root models for protection against water waves. One Xbloc wall was made up of three Xbloc units stacked on top of each other and joined together using water-resistant tape. The artificial models were designed using SolidWorks and AutoCAD software, 3D printed, laser cut and then superglued. The experiment was conducted at Nottingham Trent University Laboratory with a varying combination of single/multiple Xbloc walls and mangrove root models. The change in the wavelength, height, celerity and period was observed for six different model arrangements. The results revealed a successful decrease in the celerity, height and wavelength, as well as the elongation of the wave period (one cycle time). The hybrid arrangement of one Xbloc wall and two mangrove roots provided the best protection, reducing the wavelength, celerity and height by 5.50%, 26.46% and 58.97%, respectively, and also delaying the wave period by 28.34%. The lowest attenuation in the entire wave parameters stated was observed for the arrangement containing only one set of mangrove roots model. Therefore, the wave attenuation using the combined action of 3D printed polymer-made Xbloc walls and mangrove roots was better, because it facilitated the dissipation of wave energy to a greater degree compared to the use of only Xbloc walls or mangrove roots separately.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amirkhosro Kazemi ◽  
Luciano Castillo ◽  
Oscar M. Curet

AbstractMangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines.


2021 ◽  
Vol 408 ◽  
pp. 124985
Author(s):  
Cheng Wang ◽  
Ruiwen Hu ◽  
P.J. Strong ◽  
Wei Zhuang ◽  
Weiming Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document