Unsteady 3D Simulation of a Jet Fan With Symmetric Blades

Author(s):  
J. M. Ferna´ndez Oro ◽  
K. M. Argu¨elles Di´az ◽  
C. Santolaria Morros

This work develops the numerical modeling of a monoplane axial jet fan with symmetric blades. The goal of the study is the simulation of the flow inside a rotor with elliptic airfoils, where the Kutta condition cannot be satisfied. The unsteady 3D model includes tip clearance gridding and a sliding mesh technique to simulate transient effects. The flow patterns inside the blade passage and the wake-core structure will be studied at design operating conditions. Also, the interaction of the tip leakage flow with time-averaged structures will be analyzed in detail. Therefore, the impact of the tip vortex in the mean time performance of the jet fan will be introduced. The investigation shows how the tip leakage vortex modifies the blade loading on the suction surface. The leakage flow rolls-up in a vortical structure at the suction side, establishing a mixing mechanism that produces a low axial velocity region. As a result, the adverse pressure gradient is enhanced and a major flow separation overcomes. This feature is especially critical in case of a rotor with symmetric blades, where the flow is always detached at the trailing edge. The simulation is carried out using a commercial code, FLUENT, which resolves the Navier-Stokes set of equations. An extremely high dense mesh is introduced in the model, so tip leakage is expected to be well-captured. In addition, fully-developed detachment of the boundary layer requires superior discretizations and high quality meshes, so restrictive y+ criteria have been employed for both endwall boundaries and blade surfaces. Turbulence modeling is closed using URANS models. The Reynolds Stress Model (RSM) has been employed because of its suitable predictions for rotating flow passages. In addition, this model considers anisotropic turbulence, and effects of curvature and rotation are directly addressed in the transport equations. Therefore, swirl effects of the tip vortex are expected to be well-captured. The numerical results are compared with previous experimental data of velocity fields to validate the simulation. Axial and tangential velocity profiles were obtained using a five-hole probe. Complementary, the instantaneous wake flow structure was measured with a dual hot wire anemometer.

2009 ◽  
Author(s):  
Jesu´s Manuel Ferna´ndez Oro ◽  
Katia Mari´a Argu¨elles Di´az ◽  
Carlos Santolaria Morros ◽  
Mo´nica Galdo Vega

In last years, numerical modelling has reached a significant level of maturity in the analysis of axial turbomachinery flows. Full-unsteady, three-dimensional computations have been demonstrated as a powerful tool to characterize viscous phenomena on blade row interactions and blade passage structures. In particular, major effects have been focused on the study of deterministic fluctuations in order to quantify the impact of periodic unsteadiness on the time-averaged flow. An additional complexity concerns to the influence of the tip vortex structures on the deterministic patterns. Hence, some researchers have advanced experimental evidences on the contribution of tip leakage flow to the time-resolved distributions. Tip vortex, shedding energy at a wide range of scales, has been shown to be significant in the description of the spanwise momentum transfer and the appearance of mixing losses. Recently, the authors have investigated the impact of the tip vortex on the passage flow structures of a jet fan with symmetric blades. This work revealed valuable information about tip vortex transport in low-speed axial turbomachinery and demonstrated the ability of commercial codes to simulate three-dimensional, vortical structures with high accuracy. The present paper takes advantage of the same numerical methodology to highlight the influence of the deterministic correlations that describe the stator-rotor interaction on the tip vortex in a single-stage axial fan. Up to now, few works addressing deterministic contributions over the tip leakage flow are available in the literature, so more investigation is needed to understand the complexity of these physical mechanisms. Our contribution to the topic is based on a 3D, unsteady numerical simulation of the flow within a reduced periodic domain of the full-annulus axial stage, composed by only 3-vane and 2-blade passages. This simplification allows an enhancement of the grid density when massive parallel computations are employed. Also, comparison with experimental data measured using hot-wire anemometry is provided to validate the numerical model. The results show how the non-uniformities of the stator wake-core structure in the relative frame of reference are conditioning the tip leakage flow, addressing the influence of the operating conditions or the interrow spacing. The final objective is to provide levels of instabilities in the tip vortex derived from deterministic non-uniformities associated to vane-to-vane flow patterns, applicable in further modelling of deterministic stresses.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
D. Tate Fanning ◽  
Steven E. Gorrell ◽  
Daniel Maynes ◽  
Kerry Oliphant

Inducers are used as a first stage in pumps to minimize cavitation and allow the pump to operate at lower inlet head conditions. Inlet flow recirculation or backflow in the inducer occurs at low flow conditions and can lead to instabilities and cavitation-induced head breakdown. Backflow of an inducer with a tip clearance (TC) of τ = 0.32% and with no tip clearance (NTC) is examined with a series of computational fluid dynamics simulations. Removing the TC eliminates tip leakage flow; however, backflow is still observed. In fact, the NTC case showed a 37% increase in the length of the upstream backflow penetration. Tip leakage flow does instigate a smaller secondary leading edge tip vortex that is separate from the much larger backflow structure. A comprehensive analysis of these simulations suggests that blade inlet diffusion, not tip leakage flow, is the fundamental mechanism leading to the formation of backflow.


2021 ◽  
Author(s):  
Bipin Gupta ◽  
Toyotaka Yoshida ◽  
Shinji Ogawa ◽  
Yosuke Danmoto ◽  
Takashi Yoshimoto

Abstract Recent advancements in internal combustion engine for efficient fuel combustion, such as application of miller cycle, where the closing of engine intake valve is purposely delayed to provide more cooling of air-fuel mixture during compression stroke for better engine efficiency, has led to a requirement for turbochargers to function at a wider operating range and higher compression ratio. One of the methods which have been largely accepted is the use of variable geometry turbochargers. As compared to diesel engine, operating conditions for gasoline engine require the turbine to operate at higher exhaust temperature, which increases the risk of damaging the rotor. This paper discusses a detailed flow analysis of the effect of tip leakage and nozzle vane wake flow on surface pressure distribution of the turbine rotor, especially at the severe condition when vane trailing edge and rotor leading edge are in proximity. It was observed in steady and unsteady CFD simulations that the origination and propagation of tip leakage flow can be varied depending on the blade loading at the rotor leading edge, and the major interaction of nozzle wake can be switched from pressure surface to suction surface as rotor blade crossed a nozzle vane, which can drastically affect the alternating aerodynamic stresses. The sensitivity to this phenomenon has been evaluated by calculating the safety factor. The authors modified the rotor design to weaken the effect of tip leakage flow in order to suppress variations in rotor surface pressure as it crosses the nozzle vane. It significantly reduced the alternating stress and increased the safety factor at vibration mode 2 from 0.3 to 9.3 and mode 3 from 0.6 to 3.2 respectively.


Author(s):  
Xiaochen Mao ◽  
Bo Liu

Based on a validation of the numerical methods with an experiment, numerical simulations are carried out to study the effect of tip clearance size on the performance and tip leakage flow in a dual-stage counter-rotating axial compressor. The predicted results showed that the variation of the tip clearance size in rotor2 has a more significant impact on the overall performance and stall margin of the compressor. In addition, the impact of the tip clearance size effect is mainly on the rotor with the tip clearance size variation. The variation of the tip clearance size in rotor2 almost has no influence on the performance of rotor1, while the performance of rotor2 is increased about 1.37% at near-stall point when the tip clearance size of rotor1 is increased to 1.0 mm from 0.5 mm. At peak efficiency condition, the tip clearance size variation in rotor1 has remarkable influence on the tip leakage vortex intensity, onset point and trajectory in rotor1, but has little influence on those in rotor2. However, the tip clearance size variation in rotor2 has remarkable effect on those in both rotors. Different tip clearance size combination schemes can impact the stall-free characteristic in the counter-rotating axial compressor.


Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang ◽  
Sungryoung Lee

Numerical calculations were done to investigate unsteady flows through the tip clearance in an axial compressor. The first stage of a low speed research axial compressor with an inlet guide vane was examined after it had been confirmed that the numerically calculated performance data was in good agreement with the experimentally measured performance data. Special attention was paid to the flow during the operation of the compressor when the flow rate was low to study the flow behavior near stall. The estimated performance and the flow pattern of the compressor were found to be related to the unsteadiness of the tip leakage flow altered by the potential effect from the downstream stator row blades. It was shown that the unsteady flow calculations are necessary to predict the performance of an axial compressor, in particular, for low flow rates. On the other hand, rotating instability vortices developed due to unsteady tip leakage flow as the flow rate decreased. It was found that the flow structures corresponding to the rotating instability were merging as the flow rate decreased and the speed of the rotating instability varied with the operating conditions. Consequently, this leads to a non-synchronous vibration frequency.


Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Ning Ding ◽  
Zhiming Mao ◽  
...  

To clearly clarify how it affects the detailed tip clearance flow and flow mechanism by varying the upstream boundary layer thickness and tip clearance size, numerical studies were performed on a subsonic rotor, which is used for low-speed model testing of one rear stage embedded in a modern high-pressure compressor. Firstly, available experimental data were adopted to validate the numerical method. Second, comparisons were made for tip leakage vortex structure, the interface of leakage flow/mainflow, endwall loss, isentropic efficiency and pressure-rise between different operating conditions. Then, effects of different clearance sizes and inlet boundary layer thicknesses were investigated. At last, the self-induced unsteadiness at one near-stall operating condition was studied for different cases. Results show that increasing the tip clearance size has a deleterious effect on rotor efficiency and pressure-rise performance over the whole operating range, while thickening the inflow boundary layer is almost the same except that its pressure-rise performance will be increased at mass flow rate larger than design operating condition. Self-induced unsteadiness occurs at near-stall operating conditions, and its appearance depends largely on tip clearance size, while upstream boundary layer thickness has little effect.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Author(s):  
Wei Li ◽  
Wei-Yang Qiao ◽  
Kai-Fu Xu ◽  
Hua-Ling Luo

The tip leakage flow has significant effects on turbine in loss production, aerodynamic efficiency, etc. Then it’s important to minimize these effects for a better performance by adopting corresponding flow control. The active turbine tip clearance flow control with injection from the tip platform is given in Part-1 of this paper. This paper is Part-2 of the two-part papers focusing on the effect of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip (Partial SS Squealer), a double squealer tip (Double Side Squealer), a pressure side tip shelf with inclined squealer tip on a double squealer tip (Improved PS Squealer), a tip platform extension edge in pressure side (PS Extension) and in suction side (SS Extension) respectively. Combined with the turbine rotor and the numerical method mentioned in Part 1, the effects of passive turbine tip clearance flow controls on the tip clearance flow were sequentially simulated. The detailed tip clearance flow fields with different squealer rims were described with the streamline and the velocity vector in various planes parallel to the tip platform or normal to the tip leakage vortex core. Accordingly, the mechanisms of five passive controls were put in evidence; the effects of the passive controls on the turbine efficiency and the tip clearance flow field were highlighted. The results show that the secondary flow loss near the outer casing including the tip leakage flow and the casing boundary layer can be reduced in all the five passive control methods. Comparing the active control with the passive control, the effect brought by the active injection control on the tip leakage flow is evident. The turbine rotor efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine rotor efficiency, and it increased by 0.215%.


1993 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0 and 3.25 percent of chord at design and off-design flow conditions. Data, velocity and pressures, are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


Sign in / Sign up

Export Citation Format

Share Document