Numerical Modeling of Air-Grass Flow and BPF Noise in Lawn Mowers

Author(s):  
Sergey Timushev ◽  
Alexandr Gamarnik ◽  
Anton Tsipenko

The noise of domestic machines including lawnmowers be comes an urgent issue. As the technology matures, designers need better tools to predict performance and efficiency of these machines across a wide range of operating conditions and find optimal ways to reduce noise. Computational fluid dynamics is an increasingly powerful tool which enables designer to better understand all features of unsteady flow in these machines and to find optimal designs providing higher energetic characteristics, better cutting quality and lower pressure pulsation, vibration and noise. Cutting quality linked with evacuation of grass is a key lawnmower characteristic. Due to this fact application of two-phase (air-grass) lawnmower flow model is inevitable in a prediction procedure. The modeling procedure comprises determination of lawnmower average aerodynamic characteristics and CFD-CAA analysis by acoustic-vortex method to predict sound power data. This method is based on splitting the equations of compressible fluid dynamics into two modes — vortex and acoustic Computational approach applied for the vortex mode flow is a “moving body”-technique: The problem is solved in the absolute frame of coordinates and computational grid changes during the blade passing. Computations can be made in 4 stages: 1) Computation of the incompressible medium with getting average values of energetic parameters; 2) Computation of the incompressible medium for definition the source function of inhomogeneous acoustic-vortex wave equation; 3) Solution of the acoustic-vortex wave equation; 4) Computation of 2-phase flow. In the 3rd stage the pressure pulsation field can be represented like a sum of acoustic and vortex oscillation. Wave equation is solved relatively to pressure oscillation using an explicit numerical procedure. Zero pulsatory pressure is an initial condition for solution of the wave equation. The local complex specific acoustic impedance is used to define boundary conditions for the acoustical part of the pressure field. Thus the numerical procedure gives pressure pulsations field and sound power data on blade passing frequencies (BPF). For the 4th stage computations effective grass particle parameters are determined with accounting the stubble effect on flow parameters and particularities of grass particle interaction with rigid surfaces. Results of a lawnmower air-grass flow (grass particle trajectories and concentration) and corresponding BPF sound power data prediction are presented as an example of modeling procedure application.

Author(s):  
Nobuhiko Fukuda ◽  
Satoshi Someya ◽  
Koji Okamoto

It is thought that the pressure fluctuation can occur due to the interaction between flow through guide vanes and flow into runner blades, resulting in a vibration of turbine and a blade cracking, in a hydraulic turbine operated in a wide range for flexible power demand. High accurate velocity measurement with high time/spatial resolution can help to clarify the mechanism of the interaction and to provide good experimental data for the validation of numerical procedure. So the aim of present study is to estimate the unstable velocity field quantitatively in the area between guide vanes and runner blades, using high time-resolved particle image velocimetry (PIV). Two types of velocity measurements were carried out, i.e., phase-locked measurement and high time sequential velocity measurement, in a pump-turbine model with 20 guide vanes and 6 runner blades. The characteristic of the flow field varied corresponding to the operating conditions such as flow rate and rotational speed. Opening angles of guide vanes were kept uniform. A clockwise vortex was generated at inside of the runner blade under smaller rotational speed. A counterclockwise vortex was separated at the backside of the runner blade under higher rotational speed. At any operating conditions, the velocity between guide vanes and runner blades oscillated periodically at the blade passing frequency.


Author(s):  
Andrea G. Sanvito ◽  
Giacomo Persico ◽  
M. Sergio Campobasso

Abstract This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds.


Author(s):  
M Borghi ◽  
G Cantore ◽  
M Milani ◽  
R Paoluzzi

This paper presents some results obtained during the computational fluid dynamics (CFD) analysis of internal flows inside a hydraulic component, using a scaling technique applied to numerical pre- and post-processing. The main aim of the work is to demonstrate the reduction of computational work needed for a complete analysis of component behaviour over a wide range of operating conditions. This result is achieved through the adoption of a methodology aimed at giving the highest level of generality to a non-dimensional solution, thereby overcoming the two major limitations encountered in the use of CFD in fluid power design: computer resources and time. In the case study, the technique was applied to a hydraulic distributor and computations were performed with a commercial computational fluid dynamics code. The key factor of this technique is the evaluation, for a given distributor opening, of the Reynolds number of the flow in the metering region. Provided that this number is high enough to ensure that the discharge coefficient has reached its asymptotic value, the characterization of the flow by a single non-dimensional numerical run can be shown. The theoretical contents of the analysis of the re-scaling technique, which focuses on the engineering information necessary in component design, are described in detail. The bases for its subsequent application to actual cases are then outlined. Finally, a fairly close correlation between numerical results and experimental data is presented.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012001
Author(s):  
S G Skripkin ◽  
D A Suslov ◽  
I V Litvinov ◽  
E U Gorelikov ◽  
M A Tsoy ◽  
...  

Abstract This article presents a comparative analysis of flow characteristics behind a hydraulic turbine runner in air and water. Swirling flow with a precessing vortex core (PVC) was investigated using a laser Doppler anemometer and pressure pulsation sensors. The experiments were conducted on aerodynamic and hydrodynamic test rigs over a wide range of hydraulic turbine operating conditions. Part-load modes of hydraulic turbine operation were investigated using the Fourier transform of pressure pulsations obtained from acoustic sensors. The features of the swirling flow were shown for the range of operating conditions from deep partl-load to overload.


Author(s):  
T. H. Huang

The complex hydrodynamic phenomena of a Pebble Bed Modular Reactor (PBMR) are partly attributed to interconnecting flow paths. Modelling the hydrodynamic phenomena provides insight to the reactor over a wide range of operating conditions. The Systems Computational Fluid Dynamics (SCFD) approach combines the advantage of conventional Computational Fluid Dynamics (CFD) modelling in simulating the detailed flow interaction to the more robust solver applied in Flownex thermal-hydraulics software. Although this approach is inherently geometry-dependent, its application in a large network or complex model has seen a reduction in computational speed compared to the conventional CFD modelling approach, without compromising the integrity of the result. This expedites the design-analysis cycle and allows testing of a combination of design changes.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 123
Author(s):  
Alberto Fernández ◽  
Cintia Casado ◽  
David Alique ◽  
José Antonio Calles ◽  
Javier Marugán

This work focused on the computational fluid dynamics (CFD) modeling of H2/N2 separation in a membrane permeator module containing a supported dense Pd-based membrane that was prepared using electroless pore-plating (ELP-PP). An easy-to-implement model was developed based on a source–sink pair formulation of the species transport and continuity equations. The model also included the Darcy–Forcheimer formulation for modeling the porous stainless steel (PSS) membrane support and Sieverts’ law for computing the H2 permeation flow through the dense palladium film. Two different reactor configurations were studied, which involved varying the hydrogen flow permeation direction (in–out or out–in). A wide range of experimental data was simulated by considering the impact of the operating conditions on the H2 separation, such as the feed pressure and the H2 concentration in the inlet stream. Simulations of the membrane permeator device showed an excellent agreement between the predicted and experimental data (measured as permeate and retentate flows and H2 separation). Molar fraction profiles inside the permeator device for both configurations showed that concentration polarization near the membrane surface was not a limit for the hydrogen permeation but could be useful information for membrane reactor design, as it showed the optimal length of the reactor.


Author(s):  
Kamyar Najmi ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi ◽  
Selen Cremaschi

Very low concentration sand transport in multiphase horizontal pipes is experimentally investigated in this study. Sand concentration is chosen to be low enough to ignore the effect of particle-particle interaction. This is done to obtain the liquid and gas threshold flow rates which are required to move particles at low concentration (0.002 volume percent) of particles in multiphase pipelines. Along with obtaining the threshold flow rates, the effects of sand concentration, sand size, pipe size and liquid viscosity are also experimentally investigated. Critical velocity is defined to make sure all grains of sand continuously move in the pipe. The experimental data were obtained for a wide range of operating conditions in both intermittent and stratified flow regimes. A comparison of the obtained experimental data in this study with similar studies in the literature reveals the effect of some physical parameters affecting sad transport in multiphase flow pipelines. This study also gives some general guidelines for a more accurate model to predict minimum flow rates to move sand in multiphase flows.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document