Active Flow Control of Separated Turbulent Flow Over a Hump Using RANS, DES, and LES

Author(s):  
Subhadeep Gan ◽  
Urmila Ghia ◽  
Karman Ghia

Most practical flows in engineering applications are turbulent, and exhibit separation. Losses due to separation are undesirable because they generally have adverse effects on performance and efficiency. Therefore, control of turbulent separated flows has been a topic of significant interest as it can reduce separation losses. It is of utmost importance to understand the complex flow dynamics that leads to flow separation and come up with methods of flow control. In the past, passive flow-control was mostly implemented that does not require any additional energy source to reduce separation losses but it leads to increasing viscous losses at higher Reynolds number. More recent work has been focused primarily on active flow-control techniques that can be turned on and off depending on the requirement of flow-control. The present work is focused on implementing flow control using steady suction in the region of flow separation. The present work is Case 3 of the 2004 CFD Validation on Synthetic Jets and Turbulent Separation Control Workshop, http://cfdval2004.larc.nasa.gov/case3.html, conducted by NASA for the flow over a wall-mounted hump. The flow over a hump is an example of a turbulent separated flow. This flow is characterized by a simple geometry, but, nevertheless, is rich in many complex flow phenomena such as shear layer instability, separation, reattachment, and vortex interactions. The baseline case has been successfully simulated by Gan et al., 2007. The flow is simulated at a Reynolds number of 371,600, based on the hump chord length, C, and Mach number of 0.04. The flow control is being achieved via a slot at approximately 65% C by using steady suction. Solutions are presented for the three-dimensional RANS SST, steady and unsteady, turbulence model and DES and LES turbulence modeling approaches. Multiple turbulence modeling approaches help to ascertain what techniques are most appropriate for capturing the physics of this complex separated flow. Second-order accurate time derivatives are used for all implicit unsteady simulation cases. Mean-velocity contours and turbulent kinetic energy contours are examined at different streamwise locations. Detailed comparisons are made of mean and turbulence statistics such as the pressure coefficient, skinfriction coefficient, and Reynolds stress profiles, with experimental results. The location of the reattachment behind the hump is compared with experimental results. The successful control of this turbulent separated flow causes a reduction in the reattachment length, compared with the uncontrolled case. The effects of steady suction on flow separation and reattachment are discussed.

Author(s):  
Sertac Cadirci ◽  
Hasan Gunes

An oscillatory, zero-net-mass flux actuator system, Jet and Vortex Actuator (JaVA), is implemented on the step wall of a backward facing step. JaVA is shown previously both experimentally and numerically that it can energize the boundary layer by creating jets or vortices thus it may delay flow separation when used properly. The main part of JaVA is a rectangular cavity with a moving actuator plate. The actuator plate is mounted asymmetrically inside the cavity of the JaVA box, such that there are one narrow and one wide gap between the plate and the box. The main governing parameters are the actuator plate’s width (b), the amplitude (a) and the operating frequency (f). The main target of the control with active jets on the step wall is to influence directly the main recirculation zone, thus as the actuator plate or the step’s vertical wall moves periodically in horizontal direction, a jet emerges into the recirculation zone. Non-dimensional numbers such as the scaled amplitude (Sa = 2πa/b) and the jet Reynolds number (ReJ = 4abf/ν) as well as the maximum cross flow velocity characterize the JaVA-induced flow types and effects on the recirculation zone. One period consists of one blowing and one suction phase into the recirculation zone. The actuator plate has a sinusoidal motion determined by the amplitude and the operating frequency. Time-averaged flow fields and boundary layer profiles for actuated and not actuated cases at various operating frequencies indicate the effect of active flow control. The control effectiveness is given by the ratio of the jet Reynolds number to the Reynolds number of the incoming flow (r = ReJ/Re). A transient finite-volume-based laminar, incompressible Navier-Stokes solver (Fluent) has been used to study the flow fields generated by JaVA. The computational domain consists of a moving zone along the channel and the motion of the actuator plate is generated by a moving grid imposing appropriate boundary conditions with User-Defined-Functions (UDF). Numerical simulations reveal the JaVA-boundary layer interaction in the narrow channel for various governing parameters such as frequencies (jet Reynolds numbers) and channel flow velocities (Reynolds numbers, Re = 200, 400 and 800). The proposed control method based on suction and blowing with an oscillating backward facing step (OsBFS) seems to be effective in shortening the recirculation zone length and delaying the flow separation downstream of the backward facing step.


2021 ◽  
Author(s):  
Kewei Xu ◽  
Gecheng Zha

Abstract This paper applies Co-flow Jet (CFJ) active flow control airfoil to a NREL horizontal axis wind turbine for power output improvement. CFJ is a zero-net-mass-flux active flow control method that dramatically increases airfoil lift coefficient and suppresses flow separation at a low energy expenditure. The 3D Reynolds Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras (SA) turbulence model are solved to simulate the 3D flows of the wind turbines. The baseline wind turbine is the NREL 10.06m diameter phase VI wind turbine and is modified to a CFJ blade by implementing CFJ along the span. The baseline wind turbine performance is validated with the experiment at three wind speeds, 7m/s, 15m/s, and 25m/s. The predicted blade surface pressure distributions and power output agree well with the experimental measurements. The study indicates that the CFJ can enhance the power output at the condition where angle of attack is increased to the level that conventional wind turbine is stalled. At the speed of 7m/s that the NREL turbine is designed to achieve the optimum efficiency at the pitch angle of 3°, the CFJ turbine does not increase the power output. When the pitch angle is reduced by 13° to −10°, the baseline wind turbine is stalled and generates negative power output at 7m/s. But the CFJ wind turbine increases the power output by 12.3% assuming CFJ fan efficiency of 80% at the same wind speed. This is an effective method to extract more power from the wind at all speeds. It is particularly useful at low speeds to decrease cut-in speed and increase power output without exceeding the structure limit. At the freestream velocity of 15m/s and the CFJ momentum coefficient Cμ of 0.23, the net power output is increased by 207.7% assuming the CFJ fan efficiency of 80%, compared to the baseline wind turbine due to the removal of flow separation. The CFJ wind turbine appears to open a door to a new area of wind turbine efficiency improvement and adaptive control for optimal loading.


Author(s):  
Ehsan Asgari ◽  
Mehran Tadjfar

In this study, we have applied and compared two active flow control (AFC) mechanisms on a pitching NACA0012 airfoil at Reynolds number of 1 × 106 using 2-D computational fluid dynamics (CFD). These mechanisms are continuous blowing and suction which are applied separately on the airfoil which pitches around its quarter-chord in a sinusoidal motion. The location for suction and blowing was determined in our previous study based on the formation of a counter clock-wise vortex near the leading-edge. In our current study, we have compared the effectiveness of pure blowing and pure suction in suppressing the dynamic stall vortex (DSV) which is the main contributor to the drag increase, particularly near the maximum angle of attack (AOA) and in early downstroke motion. The blowing/suction slot is considered as a dent on the airfoil surface which enables the AFC to perform in a tangential manner. This configuration would allow blowing jet to penetrate further downstream and was shown to be more effective compared to a cross-flow orientation. We have compared the two aforementioned mechanisms in terms of hysteresis loops of lift and drag coefficients and have demonstrated the dynamics of flow in controlled and uncontrolled situations.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 794
Author(s):  
Cécile Ghouila-Houri ◽  
Célestin Ott ◽  
Romain Viard ◽  
Quentin Gallas ◽  
Eric Garnier ◽  
...  

This paper reports a calorimetric micro-sensor designed for aerodynamic applications. Measuring both the amplitude and the sign of the wall shear stress at small length-scale and high frequencies, the micro-sensor is particularly suited for flow separation detection and flow control. The micro-sensor was calibrated in static and dynamic in a turbulent boundary layer wind tunnel. Several micro-sensors were embedded in various configurations for measuring the shear stress and detecting flow separation. Specially, one was embedded inside an actuator slot for in situ measurements and twelve, associated with miniaturized electronics, were implemented on a flap model for active flow control experiments.


Author(s):  
Marcel Staats ◽  
Wolfgang Nitsche

We present results of experiments on a periodically unsteady compressor stator flow of the type which would be expected in consequence of pulsed combustion. A Reynolds number of Re = 600000 was used for the investigations. The experiments were conducted on the two-dimensional low-speed compressor testing facility in Berlin. A choking device downstream the trailing edges induced a periodic non-steady outflow condition to each stator vane which simulated the impact of a pressure gaining combuster downstream from the last stator. The Strouhal number of the periodic disturbance was Sr = 0.03 w.r.t. the stator chord length. Due to the periodic non-steady outflow condition, the flow-field suffers from periodic flow separation phenomena, which were managed by means of active flow control. In our case, active control of the corner separation was applied using fluidic actuators based on the principle of fluidic amplification. The flow separation on the centre region of the stator blade was suppressed by means of a fluidic blade actuator leading to an overall time-averaged loss reduction of 11.5%, increasing the static pressure recovery by 6.8% while operating in the non-steady regime. Pressure measurements on the stator blade and the wake as well as PIV data proved the beneficial effect of the active flow control application to the flow field and the improvement of the compressor characteristics. The actuation efficiency was evaluated by two figures of merit introduced in this contribution.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mehran Tadjfar ◽  
Ehsan Asgari

We have studied the influence of a tangential blowing jet in dynamic stall of a NACA0012 airfoil at Reynolds number of 1 × 106, for active flow control (AFC) purposes. The airfoil was oscillating between angles of attack (AOA) of 5 and 25 deg about its quarter-chord with a sinusoidal motion. We have utilized computational fluid dynamics to investigate the impact of jet location and jet velocity ratio on the aerodynamic coefficients. We have placed the jet location upstream of the counter-clockwise (CCW) vortex which was formed during the upstroke motion near the leading-edge; we have also considered several other locations nearby to perform sensitivity analysis. Our results showed that placing the jet slot within a very small range upstream of the CCW vortex had tremendous effects on both lift and drag, such that maximum drag was reduced by 80%. There was another unique observation: placing the jet at separation point led to an inverse behavior of drag hysteresis curve in upstroke and downstroke motions. Drag in downstroke motion was significantly lower than upstroke motion, whereas in uncontrolled case the converse was true. Lift was significantly enhanced during both upstroke and downstroke motions. By investigating the pressure coefficients, it was found that flow control had altered the distribution of pressure over the airfoil upper surface. It caused a reduction in pressure difference between upper and lower surfaces in the rear part, while substantially increased pressure difference in the front part of the airfoil.


Author(s):  
Michael Thake ◽  
Nathan Packard ◽  
Carlos Bonilla ◽  
Jeffrey Bons

Author(s):  
Subhadeep Gan ◽  
Urmila Ghia ◽  
Karman Ghia

Most practical flows in engineering applications are turbulent, and exhibit separation which is generally undesirable because of its adverse effects on performance and efficiency. Therefore, control of turbulent separated flows has been a topic of significant interest as it can reduce separation losses. Often, flow control work employs passive techniques to manipulate the flow. These approaches do not require any additional energy source to achieve the control, but are accompanied by additional viscous losses. However, it is more desirable to employ active techniques as these can be turned on and off, depending on the flow control requirement. Use of synthetic jets has gained popularity in recent times for active flow control because of their ability to transfer linear momentum to the flow system without net-mass injection across the boundary in the vicinity of separation. The present work is Case 3 of the 2004 CFD Validation on Synthetic Jets and Turbulent Separation Control Workshop, http://cfdval2004.larc.nasa.gov/case3.html, conducted by NASA for the flow over a wall-mounted hump. This flow is characterized by a simple geometry, but, nevertheless, is rich in many complex flow phenomena such as shear layer instability, separation, reattachment, and vortex interactions. The baseline case and control case with steady suction has been successfully simulated by Gan et al., (2007 and 2008). The present work is focused on implementing a synthetic jet to achieve flow control. The jet was simulated by implementing an analytical sinusoidal velocity boundary condition at the surface of the jet exit. The jet-exit velocity has a parabolic profile across the control slot, and a sinusoidal temporal variation. The flow is simulated at a Reynolds number of 371,600, based on the hump chord length, C, and a Mach number of 0.04. The synthetic control jet exits through a slot located at approximately 0.65 C. Solutions are obtained using the three-dimensional RANS SST turbulence model, and the DES and LES turbulence modeling approaches. Multiple turbulence modeling approaches help to ascertain what techniques are most appropriate for capturing the physics of this complex separated flow. The location of the reattachment behind the hump is compared with experimental results. The successful control of this turbulent separated flow leads to a reduction in the reattachment length, compared with the baseline case. Velocity contours at several streamwise locations are presented and compared to experimental results. Mean flow parameters such as pressure coefficients and skin-friction coefficient are presented. The paper includes detailed comparisons of turbulent parameters such as the Turbulent Kinetic Energy (TKE) and Reynolds stress profiles, with experimental results. Instantaneous vorticity contours are presented from the simulations. Discussion are presented of the effects of synthetic jet control on flow separation and reattachment and the resulting enhancement of performance and efficiency.


Author(s):  
John A. Ekaterinaris

Numerical investigations of active flow control, which can offer significant improvements to wind–turbine rotor and turbomachinery performance by suppressing detrimental effects of separated flow, are presented. Simulations of pulsating jet flow control applied on wings at low speed, high Reynolds number turbulent flow and fixed angles of incidence are carried out. Efficient time–accurate numerical methods for the incompressible Navier–Stokes equations and advanced turbulence models are used for the prediction of the complex, unsteady flowfields. Pulsating jet active flow control is applied as a surface boundary condition and the flow is time-dependent. It is found that active flow control can enhance aerodynamic performance by reducing the adverse effects of separated flow. The effect of the jet location, pulsation frequency, and jet exit velocity on flow control is investigated.


Sign in / Sign up

Export Citation Format

Share Document