Numerical Analysis of Blade Channel Vortex in Francis Turbine at Part Load of Middle-Low Head

Author(s):  
Yexiang Xiao ◽  
Zhengwei Wang ◽  
Jin Zhang ◽  
Guangjie Peng ◽  
Dingyou Liu ◽  
...  

The unsteady flow behavior and pressure fluctuations in the runner of a Francis turbine were predicted numerically for the middle-low head at three small guide vane openings. The unsteady Reynolds-averaged Navier-Stokes equations with the k–ω based SST turbulence model were solved to model the unsteady flow within the entire flow passage. The eddy characteristics inside the runner passage were discussed for various operating conditions, the shape of the blade channel vortex illustrate by the instantaneous iso-surfaces of the vorticity was similar with the experimental observation. This study investigates the characteristics of the unsteady flow dominant frequencies at different monitored points of the runner by spectrum analysis. At small guide vane opening conditions, the pulse in the runner flow passage are due to the rotor-stator interference between the runner and the guide vanes, the blade channel vortex in the runner blade passage. And the dominant frequencies of blade channel vortex were a low frequency. The unsteady flow behavior of blade channel vortex in the runner was classified numerically at part load of middle-low head.

2022 ◽  
Vol 50 ◽  
pp. 101810
Author(s):  
Subodh Khullar ◽  
Krishna M. Singh ◽  
Michel J. Cervantes ◽  
Bhupendra K. Gandhi

2010 ◽  
Vol 27 (3) ◽  
pp. 365-386 ◽  
Author(s):  
Xiao Yexiang ◽  
Wang Zhengwei ◽  
Yan Zongguo ◽  
Li Mingan ◽  
Xiao Ming ◽  
...  

Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Tong Seop Kim ◽  
Sung Tack Ro

To investigate the possible applications of the SOFC/MGT hybrid system to large electric power generations, a study for the kW-class hybrid power system conducted in our group is extended to the MW-class hybrid system in this study. Because of the matured technology of the gas turbine and commercial availability in the market, it is reasonable to construct a hybrid system with the selection of a gas turbine as an off-the-shelf item. For this purpose, the performance analysis is conducted to find out the optimal power size of the hybrid system based on a commercially available gas turbine. The optimal power size has to be selected by considering specifications of a selected gas turbine which limit the performance of the hybrid system. Also, the cell temperature of the SOFC is another limiting parameter to be considered in the selection of the optimal power size. Because of different system configuration of the hybrid system, the control strategies for the part-load operation of the MW-class hybrid system are quite different from the kW-class case. Also, it is necessary to consider that the control of supplied air to the MW-class gas turbine is typically done by the variable inlet guide vane located in front of the compressor inlet, instead of the control of variable rotational speed of the kW-class micro gas turbine. Performance characteristics at part-load operating conditions with different kinds of control strategies of supplied fuel and air to the hybrid system are investigated in this study.


Author(s):  
Hari Prasad Neopane ◽  
Bhola Thapa ◽  
Ole Gunnar Dahlhaug

This paper presents the laboratory studies of particle velocity measurement in highly swirl conditions similar to turbine flow in curved path. It includes a brief description of the developed test rig, concept of critical diameter of particle inside a Francis turbine and experimental analysis. When a particle is flowing in swirl flow, drag force and centrifugal force are two major forces influencing the particle equilibrium. The equilibrium of these two forces provides a critical diameter of the particle. While, a particle larger than the critical diameter move away from the centre and hit the wall, a particle smaller than the critical diameter flows along with the water, and ultimately sinks. For critical diameter, the particle continues to rotate in the turbine. Different shapes and sizes of particles were tested with the same operating conditions and found that triangularly shaped particles were more likely to hit the suction side of the guide vane cascade. Furthermore, this study supports the concept of separation of particles from streamlines inside the test rig, which led to the development of an operating strategy for a Francis turbine processing sediment-laden water. This study also permitted experimental verification of the size and the shape of a particle as it orbits in the turbine, until either the velocity components are changed or the particle became smaller.DOI: http://dx.doi.org/10.3126/kuset.v8i1.6034 KUSET 2012; 8(1): 1-14


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Seung-Jun Kim ◽  
Young-Seok Choi ◽  
Yong Cho ◽  
Jong-Woong Choi ◽  
Jin-Hyuk Kim

Abstract Francis turbines are often used for generating hydroelectric power, but their performance characteristics significantly depend on the operating conditions. In particular, interblade vortices in the passages between runner blades can occur at low flowrates, which can degrade performance, and increase vibrations and instability during operation. In a previous study, we showed that the hydraulic performance and flow characteristics depend on the flow passage area of runner blades under low-flowrate conditions. Under such operating conditions, the runner blade thickness can affect the interblade vortex characteristics, and in turn, affect the performance of the turbine. In this study, we investigated the effect of runner blade thicknesses in the presence of interblade vortices under low flowrates; steady- and unsteady-state Reynolds-averaged Navier–Stokes equations were solved using a shear stress transport as a turbulence model. The interblade vortices were described well at the near leading and trailing edges near the hub. These vortex regions showed flow separation and stagnation flow, and the interblade vortex characteristics were dependent on the high-magnitude unsteady pressures at the low-frequency region. For the same guide vane opening, at lower flowrates, higher blockage ratios reduced interblade vortex formation and unsteady pressure.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2013 ◽  
Author(s):  
Xiaoran Zhao ◽  
Yongyao Luo ◽  
Zhengwei Wang ◽  
Yexiang Xiao ◽  
François Avellan

Dredge pumps are usually operated at part-load conditions, in which the low-solidity centrifugal impeller could experience large internal energy dissipation, related to flow separation and vortices. In this study, SST k-ω and SAS-SST turbulence models were used, in steady and unsteady simulations, for a low-head centrifugal pump with a three-bladed impeller. The main focus of the present work was to investigate the internal energy dissipation in rotating an impeller at part-load operating conditions, related to flow separation and stall. The unsteady nature of these operating conditions was investigated. Performance experiments and transient wall pressure measurements were conducted for validation. A methodology for internal energy dissipation analysis has been proposed; and the unsteady pressure fluctuations were analyzed in the rotating impeller. The internal power losses in the volute and the impeller were mostly found in the centrifugal pump. The rotating stall phenomenon occurred with flow separation and detachment at the part-load operating condition, leading to a dissipation of the internal energy in the impeller. The rotating impeller experienced pressure fluctuations with low frequencies, at part-load operating conditions, while in the design operating condition only experienced rotating frequency.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Ri-kui Zhang ◽  
Feng Mao ◽  
Jie-Zhi Wu ◽  
Shi-Yi Chen ◽  
Yu-Lin Wu ◽  
...  

Under part-load conditions, a Francis turbine often suffers from very severe low-frequency and large-amplitude pressure fluctuation, which is caused by the unsteady motion of vortices (known as “vortex ropes”) in the draft tube. This paper first reports our numerical investigation of relevant complex flow phenomena in the entire draft tube, based on the Reynolds-averaged Navier–Stokes (RANS) equations. We then focus on the physical mechanisms underlying these complex and somewhat chaotic flow phenomena of the draft-tube flow under a part-load condition. The flow stability and robustness are our special concern, since they determine what kind of control methodology will be effective for eliminating or alleviating those adverse phenomena. Our main findings about the flow behavior in the three segments of the draft tube, i.e., the cone inlet, the elbow segment, and the outlet segment with three exits, are as follows. (1) In the cone segment, we reconfirmed a previous finding of our research group based on the turbine’s whole-flow RANS computation that the harmful vortex rope is an inevitable consequence of the global instability of the swirling flow. We further identified that this instability is caused crucially by the reversed axial flow at the inlet of the draft tube. (2) In the elbow segment, we found a reversed flow continued from the inlet cone, which evolves to slow and chaotic motion. There is also a fast forward stream driven by a localized favorable axial pressure gradient, which carries the whole mass flux downstream. The forward stream and reversed flow coexist side-by-side in the elbow, with a complex and unstable shear layer in between. (3) In the outlet segment with three exits, the forward stream always goes through a fixed exit, leaving the other two exits with a chaotic and low-speed fluid motion. Based on these findings, we propose a few control principles to suppress the reversed flow and to eliminate the harmful helical vortex ropes. Of the methods we tested numerically, a simple jet injection in the inlet is proven successful.


1994 ◽  
Vol 116 (1) ◽  
pp. 116-120 ◽  
Author(s):  
T. C. Vu ◽  
W. Shyy

Validation of a three-dimensional computational algorithm for viscous flow analysis has been conducted for two types of Francis turbine runner geometry, one low head and one high head, using experimental measurement. Assessment has been made for both qualitative features of flow behavior, as well as quantitative distribution of blade pressure and head loss. The influence of the grid size on the accuracy of the numerical solution is also discussed. Effort has been made to address some of the design issues, and to demonstrate that the present computational algorithm can make useful contributions to help improve the current design practices.


Author(s):  
Maojin Zhang ◽  
Shuhong Liu ◽  
Yulin Wu ◽  
Demin Liu ◽  
Lefu Zhang

When a Francis hydraulic turbine operates under different working heads at small flow condition, the fluid in the flow passage will generate vortex shedding near the blade leading-edge and form the channel vortex in the blade passages due to the mismatch between the outlet angle of guide vane and the inlet angle of runner blade. The severity of channel vortex will trigger high-frequency vibration or generate unit resonant vibration, affecting the operational stability of the turbines. In this paper some typical operation points were chosen out for the steady simulation of a model turbine according to a unit hill-chart. The computational domain was chosen as the whole flow passage from the inlet of the volute to the outlet of the draft tube. Based on RNG k–ε turbulence model, the internal flows was simulated, and the occurrence of vortex between the turbine runner blades was discussed. The numerical results show that the vortex motion near the development-line (IVDL) is stronger than that near the channel vortex inception-line (IVIL) in channel vortex zone marked in the hill-chart. The velocity triangle is used to explain the reasons that channel vortex occur in the suction side at high working head while in the pressure side at the low working head, and two different forms and formation mechanism of the channel vortex were analyzed.


Author(s):  
Stefan Berten ◽  
Sebastian Hentschel ◽  
Karin Kieselbach ◽  
Philippe Dupont

Deformations, mechanical stresses and vibrations in centrifugal pumps are the result of pressure fluctuations, which are acting as excitation forces. When a pump operates at its optimum, the pressure pulsations are at minimum, but for a pump operating in part-load, pressure pulsations increase and subsequent vibration and deformation levels increase. In a recent experimental research, the pressure pulsations and the resulting structural stresses in the last stage impeller of a multistage pump have experimentally investigated for different operating conditions [1]. The experimental investigations have been complemented by transient numerical simulations using a commercial CFD code and structural analysis using the pressure pulsations resulting from the CFD code as boundary conditions. In the present study, a validation of these CFD and FEM simulations is presented. The analysis has been performed in three steps. In the first step, the transient CFD results for different load cases are analyzed and compared with the experimental results in order to evaluate the CFD simulations. In the second step the time domain pressure pulsation data are post-treated and decomposed into a series of rotating pressure waves. These pressure waves are then applied as boundary conditions to an FEM model and one full impeller revolution is simulated as steady calculations for 72 angular positions. The pressure pulsations in the best efficiency point are regularly distributed in space and time and dominated by rotor-stator-interaction. For part-load operation, the pressure distribution becomes more and more unsteady. The CFD results for part load exhibit stationary stall in the diffuser for a flow rate relative to best efficiency point of q* = 0.9 and unsteady stall behavior for a q* = 0.8. While the numerical CFD results agree well with experimental data for q* = 1 and q* = 0.9, at lower part load (q* = 0.8) the CFD didn’t reproduce the experimentally observed flow behavior, especially the rotating stall. The FEM results at design conditions show relatively low tangential stresses at the impeller outlet, which agree well with the measured deformations and stresses.


Sign in / Sign up

Export Citation Format

Share Document