Dielectrophoretic Mixing With Novel Electrode Geometry

2009 ◽  
Author(s):  
G. Naga Siva Kumar ◽  
Sushanta K. Mitra ◽  
Subir Bhattacharjee

Electrokinetic mixing of analytes at micro-scale is important in several biochemical applications like cell activation, DNA hybridization, protein folding, immunoassays and enzyme reactions. This paper deals with the modeling and numerical simulation of micromixing of two different types of colloidal suspensions based on principle of dielectrophoresis (DEP). A mathematical model is developed based on Laplace, Navier-Stokes, and convection-diffusion-migration equations to calculate electric field, velocity, and concentration distributions, respectively. Mixing of two colloidal suspensions is simulated in a three-dimensional computational domain using finite element analysis considering dielectrophoretic, gravitational and convective (advective)–diffusive forces. Phase shifted AC signal is applied to the alternating electrodes for achieving the mixing of two different colloidal suspensions. The results indicate that the electric field and DEP forces are maximum at the edges of the electrodes and become minimum elsewhere. As compared to curved edges, straight edges of electrodes have lower electric field and DEP forces. The results also indicate that DEP force decays exponentially along the height of the channel. The effect of DEP forces on the concentration profile is studied. It is observed that, the concentration of colloidal particles at the electrodes edges is very less compared to elsewhere. Mixing of two colloidal suspensions due to diffusion is observed at the interface of the two suspensions. The improvement in mixing after applying the repulsive DEP forces on the colloidal suspension is observed. Most of the mixing takes place across the slant edges of the triangular electrodes. The effect of electrode pairs and the mixing length on degree of mixing efficiency are also observed.

2020 ◽  
Vol 64 (01) ◽  
pp. 23-47
Author(s):  
Robinson Peric ◽  
Moustafa Abdel-Maksoud

This article reviews different types of forcing zones (sponge layers, damping zones, relaxation zones, etc.) as used in finite volume-based flow simulations to reduce undesired wave reflections at domain boundaries, with special focus on the case of strongly reflecting bodies subjected to long-crested incidence waves. Limitations and possible sources of errors are discussed. A novel forcing-zone arrangement is presented and validated via three-dimensional (3D) flow simulations. Furthermore, a recently published theory for predicting the forcing-zone behavior was investigated with regard to its relevance for practical 3D hydrodynamics problems. It was found that the theory can be used to optimally tune the case-dependent parameters of the forcing zones before running the simulations. 1. Introduction Wave reflections at the boundaries of the computational domain can cause significant errors in flow simulations, and must therefore be reduced. In contrast to boundary element codes, where much progress in this respect has been made decades ago (see e.g., Clement 1996; Grilli &Horillo 1997), for finite volume-based flow solvers, there are many unresolved questions, especially:How to reliably reduce reflections and disturbances from the domain boundaries?How to predict the amount of undesired wave reflection before running the simulation? This work aims to provide further insight to these questions for flow simulations based on Navier-Stokes-type equations (Reynolds-averaged Navier-Stokes, Euler equations, Large Eddy Simulations, etc.), when using forcing zones to reduce undesired reflections. The term "forcing zones" is used here to describe approaches that gradually force the solution in the vicinity of the boundary towards some reference solution, as described in Section 2; some examples are absorbing layers, sponge layers, damping zones, relaxation zones, or the Euler overlay method (Mayer et al. 1998; Park et al. 1999; Chen et al. 2006; Choi &Yoon 2009; Jacobsen et al. 2012; Kimet al. 2012; Schmitt & Elsaesser 2015; Perić & Abdel-Maksoud 2016a; Vukčević et al. 2016).


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


2014 ◽  
Vol 16 (5) ◽  
pp. 901-918 ◽  

<div> <p>Three-dimensional calculations were performed to simulate the flow around a cylindrical vegetation element using the Scale Adaptive Simulation (SAS) model; commonly, this is the first step of the modeling of the flow through multiple vegetation elements. SAS solves the Reynolds Averaged Navier-Stokes equations in stable flow regions, while in regions with unstable flow it goes unsteady producing a resolved turbulent spectrum after reducing eddy viscosity according to the locally resolved vortex size represented by the von Karman length scale. A finite volume numerical code was used for the spatial discretisation of the rectangular computational domain with stream-wise, cross-flow and vertical dimensions equal to 30D, 11D and 1D, respectively, which was resolved with unstructured grids. Calculations were compared with experiments and Large Eddy Simulations (LES). Predicted overall flow parameters and mean flow velocities exhibited a very satisfactory agreement with experiments and LES, while the agreement of predicted turbulent stresses was satisfactory. Calculations showed that SAS is an efficient and relatively fast turbulence modeling approach, especially in relevant practical problems, in which the very high accuracy that can be achieved by LES at the expense of large computational times is not required.</p> </div> <p>&nbsp;</p>


1990 ◽  
Vol 216 ◽  
pp. 437-458 ◽  
Author(s):  
D. J. Coyle ◽  
C. W. Macosko ◽  
L. E. Scriven

The ribbing instability, an extremely common cause of non-uniform liquid films in coating operations, is investigated both theoretically and experimentally. The Navier–Stokes system for the two-dimensional flow in symmetric film-splitting in forward roll coating is solved by finite-element analysis. Stability of the flow with respect to three-dimensional disturbances is examined by applying linear stability theory in a consistent finite-element approach, taking Fourier components in the transverse direction. The resulting generalized asymmetric eigenproblem is solved for the growth rates of disturbances as functions of wavenumber. The theory accurately predicts the critical capillary number and wavenumber at the transition to large-amplitude ribs. A sensitive experimental technique for detecting the ribs was developed that relies on low-angle reflection of a focused strip of white light off the meniscus between the rolls. This allowed detection of much smaller amplitude ribs, and much smaller critical capillary numbers were measured. The results indicate that the transition to ribbing is an imperfect bifurcation due to end effects, and clarify earlier discordances in the literature.


Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


1987 ◽  
Vol 109 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. O. Medwell ◽  
D. T. Gethin ◽  
C. Taylor

The performance of a cylindrical bore bearing fed by two axial grooves orthogonal to the load line is analyzed by solving the Navier-Stokes equations using the finite element method. This produces detailed information about the three-dimensional velocity and pressure field within the hydrodynamic film. It is also shown that the method may be applied to long bearing geometries where recirculatory flows occur and in which the governing equations are elliptic. As expected the analysis confirms that lubricant inertia does not affect bearing performance significantly.


2013 ◽  
Vol 10 (05) ◽  
pp. 1350031 ◽  
Author(s):  
ALIREZA ARAB SOLGHAR ◽  
S. A. GANDJALIKHAN NASSAB

The three-dimensional steady state thermohydrodynamic (THD) analysis of an axial grooved oil journal bearing is obtained theoretically. Navier–Stokes equations are solved simultaneously along with turbulent kinetic energy and its dissipation rate equations coupled with the energy equation in the lubricant flow and the heat conduction equation in the bush. The AKN low-Re κ–ε turbulence model is used to simulate the mean turbulent flow field. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid and the governing equations are transformed into the computational domain. Discretized forms of the transformed equations are obtained by the control volume method and solved by the SIMPLE algorithm. The numerical results of this analysis can be used to investigate the pressure distribution, volumetric oil flow rate and the loci of shaft in the journal bearings. To validate the computational results, comparison with the experimental and theoretical data of other investigators is made, and reasonable agreement is found.


2016 ◽  
Vol 24 (04) ◽  
pp. 1750050 ◽  
Author(s):  
ROGHAYEH HADIDIMASOULEH ◽  
MAZIAR SAHBA YAGHMAEE ◽  
REZA RIAHIFAR ◽  
BABAK RAISSI

Surface tension is one of the fundamental properties of the colloids, which can be altered by concentration and size of colloidal particles. In the current work, modeling of the surface tension of suspension as it would be analyzed by maximum bubble pressure method has been performed. A new modified equation to correlate the surface tension with the bubble pressure is derived by applying fundamental thermodynamic relation considering the presence of particles in suspension and curvature of the interface between the particles and bubbles inside liquid. Moreover, the change of particles concentration in air–water interface due to capillary force is also considered. The predicted surface tension using the developed model has been verified by numerous experimental data with deviation less than 5% in most of cases. It was found that the calculated surface tension is altered by contact angle and particle radius as well as particle concentration. The obtained model may have potential application to predict the surface tension of colloidal suspension.


Sign in / Sign up

Export Citation Format

Share Document