Numerical Simulation of Insulin Depot Formation in Subcutaneous Tissue

Author(s):  
Michael M. Zedelmair ◽  
Abhijit Mukherjee

In this study a numerical model of the insulin depot formation and absorption in the subcutaneous adipose tissue is developed using the commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent. A better understanding of these mechanisms can be helpful in the development of new devices and cannula geometries as well as predicting the concentration of insulin in the blood. The injection method considered in this simulation is by the use of an insulin pump using a rapid acting U100 insulin analogue. The insulin is injected into the subcutaneous tissue in the abdominal region. The main composition of the subcutaneous tissue is blood vessels and adipose cells surrounded by interstitial fluid. The numerical simulation is conducted in a 2D-axisymmetric domain where the tissue is modeled as a fluid saturated porous media. Due to the presence of channel formation in lateral direction in the tissue, an anisotropic approach to define the permeability is studied having an impact on the viscous resistance to the flow. This configuration is resulting in a rather disk shaped depot following recent experimental findings. The depot formation is analyzed running Bolus injections ranging from 5–15 Units of insulin corresponding to 50–150μl. The depot formation model has been extended implementing the process of absorption of insulin from the depot to be able to run the simulation over longer timeframes where absorption starts playing an important role.

Author(s):  
Michael Zedelmair ◽  
Abhijit Mukherjee

Abstract In this study, a numerical model of the insulin depot formation and absorption in the subcutaneous adipose tissue is developed using the commercial Computational Fluid Dynamics (CFD) software. A better understanding of these mechanisms can be helpful in the development of new devices and cannula geometries as well as predicting the concentration of insulin in the blood. The injection method considered in this simulation is by the use of an insulin pump using a rapid acting U100 insulin analogue. The depot formation is analyzed running Bolus injections ranging from 5-15 units of insulin corresponding to 50-150µl. The insulin is injected into the subcutaneous tissue in the abdominal region. The tissue is modeled as a fluid saturated porous media. An anisotropic approach to define the tissue permeability is studied by varying the value of the porosity in parallel and perpendicular direction having an impact on the viscous resistance to the flow. Following recent experimental findings this configuration results in a disk shaped insulin depot. To be able to run the simulation over longer timeframes the depot formation model has been extended implementing the process of absorption of insulin from the depot. The developed model is then used to analyze the formation of the insulin depot in the tissue when using different flow rates and cannula geometries. The numerical model is an effective option to evaluate new cannula designs prior to the manufacturing and testing of prototypes, which are rather time consuming and expensive.


2019 ◽  
Vol 85 ◽  
pp. 02005
Author(s):  
Gelu Muscă ◽  
George Mădălin Chitaru ◽  
Costin Ioan Coşoiu ◽  
Cătalin Nae

Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software.


Author(s):  
Michael M. Zedelmair ◽  
Abhijit Mukherjee

In this study, the impact of the cannula geometry on the formation of the depot in subcutaneous tissue is investigated when injecting insulin using an insulin pump. The simulations have been conducted using the Computational Fluid Dynamics (CFD) software ANSYS Fluent. The study is focusing on rapid acting insulin analogues typically used in insulin pump therapy, which enter the bloodstream very shortly after administration. A previously developed 2-dimensional simulation has been transferred into a 3-dimensional case in order to simulate cases with non-axisymmetric geometries. The tissue has been modeled as a homogeneous anisotropic porous media by the use of different porosity values in the parallel and perpendicular direction with respect to the skin surface. The process of absorption is implemented into the model by the use of a locally variable species sink term. The basic case, simulated with a solid cannula, has been compared to other cannula geometries in order to evaluate if the delivery of insulin in the tissue can be improved. The geometries under consideration are the addition of circumferential holes in the wall of the cannula as well as using an array of cannulas instead of a single cannula. The depot formation is analyzed simulating a standard bolus injection of 0.05ml of insulin using an injection time of 25 seconds. It is observed that the addition of multiple holes in the wall of the cannula or using an array of cannulas can alter the shape of the depot quite significantly. The impact of the depot shape on the diffusion of insulin in the tissue has been evaluated by measuring the total volume of the depot after injection.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Saket Verma ◽  
L. M. Das

In-cylinder pressure-based combustion descriptors have been widely used for engine combustion control and spark advance scheduling. Although these combustion descriptors have been extensively studied for gasoline-fueled spark ignition (SI) engines, adequate literature is not available on use of alternative fuels in SI engines. In an attempt to partially address this gap, present work focuses on spark advance modeling of hydrogen-fueled SI engines based on combustion descriptors. In this study, two such combustion descriptors, namely, position of the pressure peak (PPP) and 50% mass fraction burned (MFB) have been used to evaluate the efficiency of the combustion. With a view to achieve this objective, numerical simulation of engine processes was carried out in computational fluid dynamics (CFD) software ANSYS fluent and simulation data were subsequently validated with the experimental results. In view of typical combustion characteristics of hydrogen fuel, spark advance plays a very crucial role in the system development. Based on these numerical simulation results, it was observed that the empirical rules used for combustion descriptors (PPP and 50% MFB) for the best spark advance in conventional gasoline fueled engines do not hold good for hydrogen engines. This work suggests revised empirical rules as: PPP is 8–9 deg after piston top dead center (ATDC) and position of 50% MFB is 0–1 deg ATDC for the maximum brake torque (MBT) conditions. This range may vary slightly with engine design but remains almost constant for a particular engine configuration. Furthermore, using these empirical rules, spark advance timings for the engine are presented for its working range.


2020 ◽  
Vol 38 (4) ◽  
pp. 925-932
Author(s):  
Ruslan S. Abdulrahman ◽  
Farah A. Ibrahim ◽  
Safaa H. Faisel

The heat exchanger (HX) plays a key role for several industries, to reduce the energy consumption by rising heat transfer rate through heat exchanger. In this study, numerical simulation of shell and double tube heat exchanger without and with baffles is analyzed to evaluate the heat transfer and exergy analysis. A numerical simulation of 3D model with turbulent flow at the range (4000-12000) is performed with commercial computational fluid dynamics (CFD) software ANSYS (Fluent). The circular vents baffles model is used at the side of the shell. The simulation results show that the circular vents on the baffles of the heat exchanger have a significant impact on thermal- hydraulic performance and exergy analysis. Also, the results show that the heat exchanger effectiveness with baffles increases by 17% at high Reynolds number comparing with heat exchanger without baffles. Besides, the highest value of exergy loss reached to 42W with baffles presence. Finally, it is concluded that the heat exchanger with baffles gives better hydraulic and thermal performance than that of heat exchanger without baffles.


2013 ◽  
Vol 788 ◽  
pp. 228-232
Author(s):  
Zhuo Lun Cen ◽  
Ji Gang Zhao ◽  
Ben Xian Shen

Hydrocyclones provide an economic and efficient process of separation in many industries, but there has been little detailed understanding of the strong swirling flow prevailing inside the device, especially the complex inner vortex. This work presented a computational fluid dynamics (CFD) simulation to predict and to evaluate the effects of inlet velocity and the diameter of overflow tube on the inner vortex. The calculation was carried out using commercial CFD code Ansys Fluent 14.0. The results obtained demonstrates both an overlarge inlet velocity and a too small diameter of overflow tube lead to a severe backmixing at the head of hydrocyclone, moreover the latter results in a disorder and unstructured inner vortex.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4743
Author(s):  
Tomasz Janoszek ◽  
Zbigniew Lubosik ◽  
Lucjan Świerczek ◽  
Andrzej Walentek ◽  
Jerzy Jaroszewicz

The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution.


2020 ◽  
Vol 310 ◽  
pp. 00039
Author(s):  
Kamila Kotrasova ◽  
Vladimira Michalcova

The numerical simulation of flow process and heat transfer phenomena demands the solution of continuous differential equation and energy-conservation equations coupled with the continuity equation. The choosing of computation parameters in numerical simulation of computation domain have influence on accuracy of obtained results. The choose parameters, as mesh density, mesh type and computation procedures, for the numerical diffusion of computation domain were analysed and compared. The CFD simulation in ANSYS – Fluent was used for numerical simulation of 3D stational temperature flow of the computation domain.


Author(s):  
D. Dupleac

The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document