Experimental and Computational Studies on Flow Characteristics of Single Expansion Nozzle

2021 ◽  
Author(s):  
Dakshina Murthy Inturi ◽  
Lovaraju Pinnam ◽  
Ramachandra Raju Vegesna

Abstract The present investigation aims to study the flow field characteristics of a single expansion nozzle (SEN). The flow field characteristics of conventional convergent-divergent (C-D) nozzle are also investigated for comparison. The experimental and computational studies were carried out for nozzle pressure ratios of 1.45, 1.55, 1.75, 2, 3, 4 and 5. The studies reveal that, for the single expansion nozzle the oblique shock moves towards the solid boundary with the increase of nozzle pressure ratio, which makes the flow to accelerate continuously in the majority of the divergent portion. The single expansion nozzle delivers the flow with higher Mach number than the C-D nozzle at the exit of the nozzle.

In this experimental investigation the work reported is about the influence of control on the flow field in the suddenly expanded duct at low supersonic Mach number. A Convergent-divergent (CD) nozzle was designed and fabricated out of brass material assembled with the suddenly expanded duct which was also made of brass material. At the re-circulation zone, the flow field was controlled by using the micro jets of 1 mm diameter as an orifice and the control was arranged at an interval of 90 degrees at 6.5 mm from the central axis of the main jet. The measured wall pressure distribution was presented for Mach number 1.1 for the duct diameter of 18 mm leading to the area ratio 3.24. The L/D ratio of the duct was varied from 1 to 10, and the nozzle pressure ratio (NPR) considered for the experiments was from 3, 5, 7, 9 and 11. The present results have demonstrated that the micro jets do not influence the flow field in the duct adversely and the flow field remained identical in the presence of control or absence of control


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
Yogesh Kumar Sinha ◽  
S. Thanigaiarasu

Abstract This paper presents the numerical simulation of Mach 1.5 supersonic jet with perforated tabs. The jet with straight perforation tab was compared with jets having slanted perforated tabs of different diameters. The perforation angles were kept as 0° and 10° with respect to the axis of the nozzle. The blockage areas of the tabs were 4.9 %, 4.9 % and 2.4 % for straight perforation, 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.3 mm) and 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.65 mm) respectively. The 3-D numerical simulations were carried out using the software. The mixing enhancements caused by these tabs were studied in the presence of adverse and favourable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 3, 3.7 and 5. For Mach number 1.5 jet, NPR 3 corresponds to 18.92 % adverse pressure gradients and NPR 5 corresponds to 35.13 % favourable pressure gradients. The centerline Mach number of the jet with slanted perforations is found to decay at a faster rate than uncontrolled nozzle and jet with straight perforation tab. Mach number plots were obtained at both near-field and far field downstream locations. There is 25 % and 65 % reduction in jet core length were observed for the 0° and 10° perforated tabs respectively in comparison to uncontrolled jet.


Author(s):  
Sven Scharnowski ◽  
Christian J. Kähler

Abstract The typical afterbody flow of a space launcher is characterized by a strong interaction of the engine’s exhaust jet and the separated shear layer emerging from the main body. This interaction is further complicated by strong changes in the spatial and temporal behavior of the afterbody flow during the atmospheric ascent of a launcher. Theoretically, a dual-bell nozzle not only allows for a gain in payload compared to standard single-bell nozzles, but also it alters the wake flow topology due to the two nozzle modes. To predict the benefits as well as the additional risks, the afterbody flow of a generic space launcher model equipped with a cold-flow dual-bell nozzle is investigated in detail. The flow was analyzed for sub-, trans- and supersonic Mach numbers ranging from 0.3 to 2.9 for a variety of nozzle pressure ratios. Particle image velocimetry measurements and schlieren measurements with high repetition rate were performed to determine the dynamics of the separated shear layer, the nozzle jet and their interaction. It is shown that the reattachment length of the base flow decreases with increasing nozzle pressure ratio. Furthermore, the nozzle pressure ratio at which the dual-bell nozzle switches from sea-level mode to altitude mode is reduced by $$15\%$$ 15 % with high subsonic outer flow and by as much as $$65\%$$ 65 % for an outer flow at a Mach number of 1.6. Even for a constant nozzle pressure ratio, the nozzle flow topology depends on the Mach number of the outer flow.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
S. Pavithrabalan ◽  
K. Udhayakumar

Abstract Control of Mach 1.8 circular jet with slanted perforated tabs is studied experimentally. Two sets of perforated tabs were used for this study. The perforation angles were 0° and 30° with respect to axis of the nozzle. The blockage areas of the tabs were 5 %. The mixing enhancements caused by these tabs were studied in the presence of adverse and favorable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 4, 5.74 and 8. For Mach number 1.8, jet NPR 4 corresponds to 30 % adverse pressure gradients and NPR 8 corresponds to 39.37 % favorable pressure gradients. The pressure decay characteristics and shadowgraph images of perforated tabs at different NPR were compared. There is 45 % and 65 % reduction in jet core length were observed for the 0° and 30° perforated tabs respectively in both pitot and shadowgraph experiments in comparison to uncontrolled jet.


This paper presents the results of an experimental investigation to study the effectiveness of the control jets to control base pressure in rapidly expanded circular tubes. Four tiny jets of 1 mm orifice diameter located at ninety degrees interval in cross shape along a pitch circle diameter of 1.3. The Mach number, the L/D ratio, and the area ratio of the study were 2.8, from 1 to 10, and 4.84, respectively. The nature of the flow field, the development of the flow in the duct, as well as the static wall pressure distribution in the duct was measured and discussed. The results indicate that the tiny jets can be used as an active dynamic controller for the base pressure. The wall pressure distribution is not adversely influenced by the small jets. From the present investigation, it is evident that for a given Mach number and nozzle pressure ratio one can identify the minimum duct L/D needed for the flow remained attached with the wall of the duct. The trend for the duct length L = 5D seems to show different results, due to the influence of back pressure and the peak pressure values are also less than that those were for higher L/D ratios, especially in respect of L/D = 5. Further, the flow field has smoothened in the duct, and wall pressure values with and without micro jets are identical. This trend continues until L/D = 4, then later for lower L/Ds like L/D = 3, the flow seems to be attached at higher NPRs. But for lower NPRs the flow is not attached


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1758-1762 ◽  

This article reports the outcome of the windtunnel investigation on the role of micro jets as an active control on the wall pressure distribution. Four tiny jets of 1 mm diameter located at 90-degree intervals along a pcd of 1.3 are employed for the control. The Mach number considered for suddenly expanded flow through the nozzle is 1.5, and the microjets are expanded suddenly into a duct at the base with an area ratio of 3.24 times the CD nozzle exit area. The L/D ratio of the duct was reduced from 10 to 1 in steps of 1. The nozzle pressure ratio (NPR) was operated at 3 to 11 with and without control. The wall pressure distribution is observed in the suddenly expanded axi-symmetric duct. From the results, it has been found that the wall pressure distribution does not adversely influence the micro jet controller


2018 ◽  
Vol 172 ◽  
pp. 01004
Author(s):  
Fharrukh Ahmed ◽  
S. A. Khan

This study has been carried out to assess the efficacy of the flow regulations in the form of tiny jets to regulate the pressure in the base region of an abruptly expanded duct. Four tiny jets of 1mm diameter placed at 90° intervals at 6.5 mm distance from the main jet in the wake region of the base were employed as flow management mechanism. The experiments were conducted at the inertia level of M = 2.5 & 3.0. The jets from the nozzles were expanded abruptly into a circular duct with four cross-sectional areas of 2.56, 3.24, 4.84 and 6.25. The L/D ratio of the enlarged duct considered was from 10 to 1 and experiments were conducted for Nozzle Pressure Ratio (NPR) from 3 to 11. Since the jets Mach numbers are high and the highest NPR tested was 11 which imply that the flow remains over expanded, even though, with increase in the NPR, the level of over expansion will decrease. It is well known that for over expanded nozzles an oblique shock will be formed at the nozzle lip, which in turn will result in the increase of the base pressure once it passes through the shock wave. From the results it is observed that for the NPRs 3 and 5 there is no appreciable gain in the base pressure, and hence, control employed as tiny jets are not effective, however, at NPR 7, 9, and 11 there is remarkable change in the base pressure values. This clearly indicates that NPR plays a significant role to decide on the magnitude of the base pressure and the control efficacy of the flow regulation mechanism as the tiny jets. It is found that the present method of flow regulation mechanism can be used as effective regulator of the base flows in an abruptly expanded duct. The control does not alter the nature of the flow in the enlarge duct.


2020 ◽  
Vol 364 ◽  
pp. 343-362 ◽  
Author(s):  
Yong Liu ◽  
Juan Zhang ◽  
Jianping Wei ◽  
Xiaotian Liu

Aerospace ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
Duy Thien Nguyen ◽  
Blake Maher ◽  
Yassin Hassan

The current work experimentally investigates the flowfield characteristics of an under-expanded turbulent jet impinging on a solid surface for various nozzle-to-plate distances 2.46 D j , 1.64 D j , and 0.82 D j ( D j is the jet hydraulic diameter), and nozzle pressure ratios (NPRs) ranging from 2 to 2.77 . Planar particle image velocimetry (PIV) measurements were performed in the central plane of the test nozzle and near the impingement surface. From the obtained PIV velocity vector fields, flow characteristics of under-expanded impinging jets, such as mean velocity, root-mean-square fluctuating velocity, and Reynolds stress profiles, were computed. Comparisons of statistical profiles obtained from PIV velocity measurements were performed to study the effects of the impingement surface, nozzle-to-plate distances, and NPRs to the flow patterns. Finally, proper orthogonal decomposition (POD) analysis was applied to the velocity snapshots to reveal the statistically dominant flow structures in the impinging jet regions.


Sign in / Sign up

Export Citation Format

Share Document