scholarly journals Experimental Research on Wall Pressure Distribution in C-D Nozzle at Mach number 1.1 for Area Ratio 3.24

In this experimental investigation the work reported is about the influence of control on the flow field in the suddenly expanded duct at low supersonic Mach number. A Convergent-divergent (CD) nozzle was designed and fabricated out of brass material assembled with the suddenly expanded duct which was also made of brass material. At the re-circulation zone, the flow field was controlled by using the micro jets of 1 mm diameter as an orifice and the control was arranged at an interval of 90 degrees at 6.5 mm from the central axis of the main jet. The measured wall pressure distribution was presented for Mach number 1.1 for the duct diameter of 18 mm leading to the area ratio 3.24. The L/D ratio of the duct was varied from 1 to 10, and the nozzle pressure ratio (NPR) considered for the experiments was from 3, 5, 7, 9 and 11. The present results have demonstrated that the micro jets do not influence the flow field in the duct adversely and the flow field remained identical in the presence of control or absence of control

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1758-1762 ◽  

This article reports the outcome of the windtunnel investigation on the role of micro jets as an active control on the wall pressure distribution. Four tiny jets of 1 mm diameter located at 90-degree intervals along a pcd of 1.3 are employed for the control. The Mach number considered for suddenly expanded flow through the nozzle is 1.5, and the microjets are expanded suddenly into a duct at the base with an area ratio of 3.24 times the CD nozzle exit area. The L/D ratio of the duct was reduced from 10 to 1 in steps of 1. The nozzle pressure ratio (NPR) was operated at 3 to 11 with and without control. The wall pressure distribution is observed in the suddenly expanded axi-symmetric duct. From the results, it has been found that the wall pressure distribution does not adversely influence the micro jet controller


This paper presents the results of an experimental investigation to study the effectiveness of the control jets to control base pressure in rapidly expanded circular tubes. Four tiny jets of 1 mm orifice diameter located at ninety degrees interval in cross shape along a pitch circle diameter of 1.3. The Mach number, the L/D ratio, and the area ratio of the study were 2.8, from 1 to 10, and 4.84, respectively. The nature of the flow field, the development of the flow in the duct, as well as the static wall pressure distribution in the duct was measured and discussed. The results indicate that the tiny jets can be used as an active dynamic controller for the base pressure. The wall pressure distribution is not adversely influenced by the small jets. From the present investigation, it is evident that for a given Mach number and nozzle pressure ratio one can identify the minimum duct L/D needed for the flow remained attached with the wall of the duct. The trend for the duct length L = 5D seems to show different results, due to the influence of back pressure and the peak pressure values are also less than that those were for higher L/D ratios, especially in respect of L/D = 5. Further, the flow field has smoothened in the duct, and wall pressure values with and without micro jets are identical. This trend continues until L/D = 4, then later for lower L/Ds like L/D = 3, the flow seems to be attached at higher NPRs. But for lower NPRs the flow is not attached


2021 ◽  
Author(s):  
Dakshina Murthy Inturi ◽  
Lovaraju Pinnam ◽  
Ramachandra Raju Vegesna

Abstract The present investigation aims to study the flow field characteristics of a single expansion nozzle (SEN). The flow field characteristics of conventional convergent-divergent (C-D) nozzle are also investigated for comparison. The experimental and computational studies were carried out for nozzle pressure ratios of 1.45, 1.55, 1.75, 2, 3, 4 and 5. The studies reveal that, for the single expansion nozzle the oblique shock moves towards the solid boundary with the increase of nozzle pressure ratio, which makes the flow to accelerate continuously in the majority of the divergent portion. The single expansion nozzle delivers the flow with higher Mach number than the C-D nozzle at the exit of the nozzle.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1000-1003 ◽  

In this paper, a study on the effect of the control on the wall pressure as well as the quality of the flow when tiny jets were employed. The small jet aimed to regulate the base pressure at the base region of the suddenly expanded duct and wall pressure distribution is carried out experimentally. The convergent-divergent (CD) nozzle with a suddenly expanded duct was designed to observe the wall pressure distribution with and without control using small jets. In order to obtain the results with the effect of controlled four tiny jets of 1 mm diameter located at a ninety-degree interval along a pitch circle diameter (PCD) of 1.3 times the CD nozzle exit diameter in the base, region was employed as active controls. The Mach numbers of the rapidly expanded are 1.5. The jets were expanded quickly into an axis-symmetry duct with an area ratio of 4.84. The length-todiameter (L/D) ratio of the rapid expansion duct was diverse from 10 to 1. There is no adverse effect due to the presence of the tiny jets on the flow field as well as the quality of the flow in the duct


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
Yogesh Kumar Sinha ◽  
S. Thanigaiarasu

Abstract This paper presents the numerical simulation of Mach 1.5 supersonic jet with perforated tabs. The jet with straight perforation tab was compared with jets having slanted perforated tabs of different diameters. The perforation angles were kept as 0° and 10° with respect to the axis of the nozzle. The blockage areas of the tabs were 4.9 %, 4.9 % and 2.4 % for straight perforation, 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.3 mm) and 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.65 mm) respectively. The 3-D numerical simulations were carried out using the software. The mixing enhancements caused by these tabs were studied in the presence of adverse and favourable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 3, 3.7 and 5. For Mach number 1.5 jet, NPR 3 corresponds to 18.92 % adverse pressure gradients and NPR 5 corresponds to 35.13 % favourable pressure gradients. The centerline Mach number of the jet with slanted perforations is found to decay at a faster rate than uncontrolled nozzle and jet with straight perforation tab. Mach number plots were obtained at both near-field and far field downstream locations. There is 25 % and 65 % reduction in jet core length were observed for the 0° and 10° perforated tabs respectively in comparison to uncontrolled jet.


In this paper, the outcome of the experimental investigation and the flow field development in the duct at supersonic Mach number of 1.2 is presented. The experiments were conducted at various NPR which covers the condition of correct expansion and under expansion. A Convergent-divergent (C-D) nozzle which is connected with the suddenly expanded duct of the diameter of 16 mm of area ratio 2.56. The recirculation zone is controlled by using the microjets of 1 mm of orifice diameter which are placed at 90 degrees interval at 6.5 mm from the central axis of the main jet. The L/D of the duct was used in the investigation was from 1 to 10, and the NPR at which the experiments were conducted considered are in the range from 3, 5, 7, 9 and 11.


Author(s):  
M. Ahmed Ali Baig ◽  
Sher Afghan Khan ◽  
Mohammad Yunus Khan

The results of an experimental investigation carried out to control the base pressure in a suddenly expanded axi-symmetric passage is presented in this paper. An active control in the form of micro jets is employed to control the base pressure. Air injection at four locations at the base, symmetric to the nozzle axis is used as the active control. The jet Mach number studied and the area ratios are 1.87, and 2.56, 3.24, 4.84, and 6.25. The L/D ratio is varied from 10 to 1. The experiments are conducted at a fixed level of under expansion (i.e. Pe/Pa = 1.5). In addition to base pressure, wall pressure field along the duct was also measured. As high as 80 percent increase in base pressure was achieved for certain combination of parameters of the present study. The minimum Length-todiameter ratio of the duct required is L/D = 2 for area ratios 6.25 and 4.84. Whereas, this requirement is L/D = 1 for area ratios 2.56 and 3.24.


Author(s):  
Sven Scharnowski ◽  
Christian J. Kähler

Abstract The typical afterbody flow of a space launcher is characterized by a strong interaction of the engine’s exhaust jet and the separated shear layer emerging from the main body. This interaction is further complicated by strong changes in the spatial and temporal behavior of the afterbody flow during the atmospheric ascent of a launcher. Theoretically, a dual-bell nozzle not only allows for a gain in payload compared to standard single-bell nozzles, but also it alters the wake flow topology due to the two nozzle modes. To predict the benefits as well as the additional risks, the afterbody flow of a generic space launcher model equipped with a cold-flow dual-bell nozzle is investigated in detail. The flow was analyzed for sub-, trans- and supersonic Mach numbers ranging from 0.3 to 2.9 for a variety of nozzle pressure ratios. Particle image velocimetry measurements and schlieren measurements with high repetition rate were performed to determine the dynamics of the separated shear layer, the nozzle jet and their interaction. It is shown that the reattachment length of the base flow decreases with increasing nozzle pressure ratio. Furthermore, the nozzle pressure ratio at which the dual-bell nozzle switches from sea-level mode to altitude mode is reduced by $$15\%$$ 15 % with high subsonic outer flow and by as much as $$65\%$$ 65 % for an outer flow at a Mach number of 1.6. Even for a constant nozzle pressure ratio, the nozzle flow topology depends on the Mach number of the outer flow.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
S. Pavithrabalan ◽  
K. Udhayakumar

Abstract Control of Mach 1.8 circular jet with slanted perforated tabs is studied experimentally. Two sets of perforated tabs were used for this study. The perforation angles were 0° and 30° with respect to axis of the nozzle. The blockage areas of the tabs were 5 %. The mixing enhancements caused by these tabs were studied in the presence of adverse and favorable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 4, 5.74 and 8. For Mach number 1.8, jet NPR 4 corresponds to 30 % adverse pressure gradients and NPR 8 corresponds to 39.37 % favorable pressure gradients. The pressure decay characteristics and shadowgraph images of perforated tabs at different NPR were compared. There is 45 % and 65 % reduction in jet core length were observed for the 0° and 30° perforated tabs respectively in both pitot and shadowgraph experiments in comparison to uncontrolled jet.


Sign in / Sign up

Export Citation Format

Share Document