Ceramic Gas Turbine Materials Impact Evaluation

Author(s):  
Mark van Roode ◽  
Oscar Jimenez ◽  
John McClain ◽  
Jeff Price ◽  
Vijay Parthasarathy ◽  
...  

Impact of foreign or domestic material on components in the hot section of gas turbines with ceramic components is a common cause of catastrophic failure. Several such occurrences were observed during engine testing under the Ceramic Stationary Gas Turbine program sponsored by the U.S. Department of Energy. A limited analysis was carried out at Solar Turbines Incorporated (Solar), which involved modeling of the impact in the hot section. Based on the results of this study an experimental investigation was carried out at the University of Dayton Research Institute Impact Physics Laboratory to establish the conditions leading to significant impact damage in silicon-based ceramics. The experimental set up involved impacting ceramic flexure bars with spherical metal particulates under conditions of elevated temperature and controlled velocity. The results of the study showed a better correlation of impact damage with momentum than with kinetic energy. Increased test specimen mass and fracture toughness were found to improve impact resistance. Continuous fiber-reinforced ceramic composite (CFCC) materials have better impact resistance than monolithics. A threshold velocity was established for impacting particles of a defined mass. Post-impact metallography was carried out at Oak Ridge National Laboratory to further establish the impact mechanism.

Author(s):  
Narendernath Miriyala ◽  
Josh Kimmel ◽  
Jeffrey Price ◽  
Karren More ◽  
Peter Tortorelli ◽  
...  

Under the Ceramic Stationary Gas Turbine (CSGT) Program and the Advanced Materials Program, sponsored by the U.S. Department of Energy (DOE), several silicon carbide/silicon carbide (SiC/SiC) combustor liners were field tested in a Solar Turbines Centaur 50S gas turbine, which accumulated approximately 40000 hours by the end of 2001. To date, five field tests were completed at Chevron, Bakersfield, CA, and one test at Malden Mills, Lawrence, MA. The evaluation of SiC/SiC liners with an environmental barrier coating (EBC) after the fifth field test at Bakersfield (13937 hours) and the first field test at Malden Mills (7238 hours) is presented in this paper. The work at Oak Ridge National Laboratory (ORNL) in support of the field tests was supported by DOE’s Continuous Fiber-Reinforced Ceramic Composite (CFCC) Program.


Author(s):  
Philip J. Maziasz ◽  
John P. Shingledecker ◽  
Bruce A. Pint ◽  
Neal D. Evans ◽  
Yukinori Yamamoto ◽  
...  

The Oak Ridge National Laboratory (ORNL) has been involved in research and development related to improved performance of recuperators for industrial gas turbines since about 1996, and in improving recuperators for advanced microturbines since 2000. Recuperators are compact, high efficiency heat-exchangers that improve the efficiency of smaller gas turbines and microturbines. Recuperators were traditionally made from 347 stainless steel and operated below or close to 650°C, but today are being designed for reliable operation above 700°C. The Department of Energy (DOE) sponsored programs at ORNL have helped defined the failure mechanisms in stainless steel foils, including creep due to fine grain size, accelerated oxidation due to moisture in the hot exhaust gas, and loss of ductility due to aging. ORNL has also been involved in selecting and characterizing commercial heat-resistant stainless alloys, like HR120 or the new AL20-25+Nb, that should offer dramatically improved recuperator capability and performance at a reasonable cost. This paper summarizes research on sheets and foils of such alloys over the last few years, and suggests the next likely stages for manufacturing recuperators with upgraded performance for the next generation of larger 200–250 kW advanced microturbines.


Author(s):  
Philip J. Maziasz ◽  
Bruce A. Pint ◽  
John P. Shingledecker ◽  
Karren L. More ◽  
Neal D. Evans ◽  
...  

Compact recuperators/heat-exchangers increase the efficiency of both microturbines and smaller industrial gas turbines. Most recuperators today are made from 347 stainless steel and operate well below 700°C. Larger engine sizes, higher exhaust temperatures and alternate fuels all demand recuperator materials with greater performance (creep strength, corrosion resistance) and reliability than 347 steel, especially for temperatures of 700–750°C. The Department of Energy (DOE) sponsors programs at the Oak Ridge National Laboratory (ORNL) to produce and evaluate cost-effective high-temperature recuperator alloys. This paper summarizes the latest high-temperature creep and corrosion data for a commercial 347 steel with modified processing for better creep resistanc, and for advanced commercial alloys with significantly better creep and corrosion resistance, including alloys NF709, HR120. Similar data are also provided on small lab heats of several new ORNL modified stainless steels.


Author(s):  
Philip J. Maziasz ◽  
Bruce A. Pint ◽  
Robert W. Swindeman ◽  
Karren L. More ◽  
Edgar Lara-Curzio

Compact recuperators/heat-exchangers are essential hardware that increases the efficiency of microturbines and smaller industrial gas turbines. There are several different kinds of recuperator technology (primary surface, plate and fin, spiral, and others), but they all have several common materials needs. Most commercial recuperators today are made from 347 stainless steel sheet or foil. Increased engine size, higher exhaust temperatures and alternate fuels all require greater performance (strength, corrosion resistance) and reliability than 347 steel, especially as temperatures approach or exceed 750°C. To meet these needs, the Department of Energy (DOE) has sponsored programs at the Oak Ridge National Laboratory (ORNL) to measure properties of commercial sheet and foil materials, to analyze recuperator components, and to identify or develop materials with improved performance and reliability, but which also are cost-effective. This paper summarizes high-temperature creep and corrosion testing of commercial 347 used for current recuperators, testing of HR 120 and modified 803 alloys, and development of modified 347 stainless steels.


2005 ◽  
Vol 128 (4) ◽  
pp. 814-819 ◽  
Author(s):  
Philip J. Maziasz ◽  
John P. Shingledecker ◽  
Bruce A. Pint ◽  
Neal D. Evans ◽  
Yukinori Yamamoto ◽  
...  

The Oak Ridge National Laboratory (ORNL) has been involved in research and development related to improved performance of recuperators for industrial gas turbines since about 1996, and in improving recuperators for advanced microturbines since 2000. Recuperators are compact, high efficiency heat-exchangers that improve the efficiency of smaller gas turbines and microturbines. Recuperators were traditionally made from 347 stainless steel and operated below or close to 650°C, but today are being designed for reliable operation above 700°C. The Department of Energy (DOE) sponsored programs at ORNL have helped defined the failure mechanisms in stainless steel foils, including creep due to fine grain size, accelerated oxidation due to moisture in the hot exhaust gas, and loss of ductility due to aging. ORNL has also been involved in selecting and characterizing commercial heat-resistant stainless alloys, like HR120 or the new AL20-25+Nb, that should offer dramatically improved recuperator capability and performance at a reasonable cost. This paper summarizes research on sheets and foils of such alloys over the last few years, and suggests the next likely stages for manufacturing recuperators with upgraded performance for the next generation of larger 200-250kW advanced microturbines.


Author(s):  
Don Anson ◽  
Mark A. Paisley ◽  
M. A. Ratcliff

Gas turbine based power and cogeneration schemes are likely to become more favored as turbine efficiencies improve, but the economics of local power generation may depend on the use of low cost fuels other than natural gas. Opportunities may arise in the application of gas turbines in the pulp and paper industry and the wider use of biomass derived fuels in general. These fuels, as produced, typically contain inorganic impurities originating from ash forming substances and other minor constituents of the feedstock. Also, depending on the biomass treatment process, they contain varying amounts of complex organic derivatives, commonly referred to as tars, and some simpler condensable vapors. The Department of Energy is sponsoring work aimed at providing realistic data on low level constituents and impurities in gas derived by indirect gasification of wood, some of which may have disproportionately severe effects on turbine operation, durability, and emissions performance. It is planned to sample gas from both laboratory scale (up to 20 tons/day) and pilot scale (200 tons/day) installations and to assess the effectiveness of wet scrubbing procedures and catalytic reforming of condensables in cleaning up the gases. This paper discusses the rationale for this work, experimental approach, and analytic procedures that will be used. The work will include the operation of a small (220-kWe) gas turbine to provide direct information on the impact of using the final biomass derived gas delivered by the system. The laboratory scale work is currently under way, with a planned completion date in mid 2000. The second phase is dependent on arrangements for integration of the R&D effort with the operation of the pilot plant.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2021 ◽  
Author(s):  
Senthil Krishnababu ◽  
Omar Valero ◽  
Roger Wells

Abstract Data driven technologies are revolutionising the engineering sector by providing new ways of performing day to day tasks through the life cycle of a product as it progresses through manufacture, to build, qualification test, field operation and maintenance. Significant increase in data transfer speeds combined with cost effective data storage, and ever-increasing computational power provide the building blocks that enable companies to adopt data driven technologies such as data analytics, IOT and machine learning. Improved business operational efficiency and more responsive customer support provide the incentives for business investment. Digital twins, that leverages these technologies in their various forms to converge physics and data driven models, are therefore being widely adopted. A high-fidelity multi-physics digital twin, HFDT, that digitally replicates a gas turbine as it is built based on part and build data using advanced component and assembly models is introduced. The HFDT, among other benefits enables data driven assessments to be carried out during manufacture and assembly for each turbine allowing these processes to be optimised and the impact of variability or process change to be readily evaluated. On delivery of the turbine and its associated HFDT to the service support team the HFDT supports the evaluation of in-service performance deteriorations, the impact of field interventions and repair and the changes in operating characteristics resulting from overhaul and turbine upgrade. Thus, creating a cradle to grave physics and data driven twin of the gas turbine asset. In this paper, one branch of HFDT using a power turbine module is firstly presented. This involves simultaneous modelling of gas path and solid using high fidelity CFD and FEA which converts the cold geometry to hot running conditions to assess the impact of various manufacturing and build variabilities. It is shown this process can be executed within reasonable time frames enabling creation of HFDT for each turbine during manufacture and assembly and for this to be transferred to the service team for deployment during field operations. Following this, it is shown how data driven technologies are used in conjunction with the HFDT to improve predictions of engine performance from early build information. The example shown, shows how a higher degree of confidence is achieved through the development of an artificial neural network of the compressor tip gap feature and its effect on overall compressor efficiency.


1988 ◽  
Vol 110 (4) ◽  
pp. 670-676
Author(s):  
R. R. Judkins ◽  
R. A. Bradley

The Advanced Research and Technology Development (AR&TD) Fossil Energy Materials Program is a multifaceted materials research and development program sponsored by the Office of Fossil Energy of the U.S. Department of Energy. The program is administered by the Office of Technical Coordination. In 1979, the Office of Fossil Energy assigned responsibilities for this program to the DOE Oak Ridge Operations Office (ORO) as the lead field office and Oak Ridge National Laboratory (ORNL) as the lead national laboratory. Technical activities on the program are divided into three research thrust areas: structural ceramic composites, alloy development and mechanical properties, and corrosion and erosion of alloys. In addition, assessments and technology transfer are included in a fourth thrust area. This paper provides information on the structure of the program and summarizes some of the major research activities.


Sign in / Sign up

Export Citation Format

Share Document