CFD Prediction of Secondary Airflow Through Holes in Rotating Shafts

Author(s):  
Colin Young ◽  
Guy D. Snowsill

Internal cooling of gas turbine engines is achieved by bleeding air off from various compressor stages and delivering it, via a complex network of flow passages, to the desired location. In modern gas turbines the air bled off for such purposes may account for up to 20% of the core airflow and is controlled by static and rotating restrictions such as orifices and seals. As this secondary air makes no direct contribution to engine thrust, there are strong economic incentives for acquiring a detailed knowledge of the flow characteristics of such devices under engine operating conditions, so that secondary air consumption can be minimised. In the present work the behaviour of secondary airflow through radial drillings in concentric shaft assemblies undergoing co- and contra-rotation is investigated using CFD techniques. The results of this work compare well with previously published orifice flow data and provide qualitative and quantitative information on these complex flows to support future air system component design.

2021 ◽  
pp. 1-21
Author(s):  
Z. Hao ◽  
X. Yang ◽  
Z. Feng

Abstract Particulate deposits in aero-engine turbines change the profile of blades, increase the blade surface roughness and block internal cooling channels and film cooling holes, which generally leads to the degradation of aerodynamic and cooling performance. To reveal particle deposition effects in the turbine, unsteady simulations were performed by investigating the migration patterns and deposition characteristics of the particle contaminant in a one-stage, high-pressure turbine of an aero-engine. Two typical operating conditions of the aero-engine, i.e. high-temperature take-off and economic cruise, were discussed, and the effects of particle size on the migration and deposition of fly-ash particles were demonstrated. A critical velocity model was applied to predict particle deposition. Comparisons between the stator and rotor were made by presenting the concentration and trajectory of the particles and the resulting deposition patterns on the aerofoil surfaces. Results show that the migration and deposition of the particles in the stator passage is dominated by the flow characteristics of fluid and the property of particles. In the subsequential rotor passage, in addition to these factors, particles are also affected by the stator–rotor interaction and the interference between rotors. With higher inlet temperature and larger diameter of the particle, the quantity of deposits increases and the deposition is distributed mainly on the Pressure Side (PS) and the Leading Edge (LE) of the aerofoil.


Author(s):  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Luca Innocenti ◽  
Mirko Micio

Reliable design of secondary air system is one of the main tasks for the safety, unfailing and performance of gas turbine engines. To meet the increasing demands of gas turbines design, improved tools in prediction of the secondary air system behavior over a wide range of operating conditions are needed. A real gas turbine secondary air system includes several components, therefore its analysis is not carried out through a complete CFD approach. Usually, that predictions are performed using codes, based on simplified approach which allows to evaluate the flow characteristics in each branch of the air system requiring very poor computational resources and few calculation time. Generally the available simplified commercial packages allow to correctly solve only some of the components of a real air system and often the elements with a more complex flow structure cannot be studied; among such elements, the analysis of rotating cavities is very hard. This paper deals with a design-tool developed at the University of Florence for the simulation of rotating cavities. This simplified in-house code solves the governing equations for steady one-dimensional axysimmetric flow using experimental correlations both to incorporate flow phenomena caused by multidimensional effects, like heat transfer and flow field losses, and to evaluate the circumferential component of velocity. Although this calculation approach does not enable a correct modeling of the turbulent flow within a wheel space cavity, the authors tried to create an accurate model taking into account the effects of inner and outer flow extraction, rotor and stator drag, leakages, injection momentum and, finally, the shroud/rim seal effects on cavity ingestion. The simplified calculation tool was designed to simulate the flow in a rotating cavity with radial outflow both with a Batchelor and/or Stewartson flow structures. A primary 1D-code testing campaign is available in the literature [1]. In the present paper the authors develop, using CFD tools, reliable correlations for both stator and rotor friction coefficients and provide a full 1D-code validation comparing, due to lack of experimental data, the in house design-code predictions with those evaluated by CFD.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Stefano Gori ◽  
Luca Bozzi ◽  
Stefano Traverso

This paper reviews a modular-structured program ESMS (Energy System Modular Simulation) for the simulation of air-cooled gas turbines cycles, including the calculation of the secondary air system. The program has been tested for the Ansaldo Energia gas turbine V94.3A, which is one of the more advanced models in the family Vx4.3A with a rated power of 270 MW. V94.3A cooling system has been modeled with SASAC (Secondary Air System Ansaldo Code), the Ansaldo code used to predict the structure of the flow through the internal air system. The objective of the work was to investigate the tuning of the analytical program on the basis of the data from design and performance codes in use at Ansaldo Energy Gas Turbine Department. The results, both at base load over different ambient conditions and in critical off-design operating points (full-speed-no-load and minimum-load), have been compared with APC (Ansaldo Performance Code) and confirmed by field data. The coupled analysis of cycle and cooling network shows interesting evaluations for components life estimation and reliability during off-design operating conditions.


Author(s):  
M. Hu¨ning

Gas turbines and jet engines consist of a network of connected cavities beside the main gas path, called secondary air system. These cavities, which are often surrounded by stationary and high angular speed rotating walls are exposed to varying pressure and temperature levels of air or oil contaminated air and are connected to each other by orifices or restrictors. It is vital to control the secondary flow, to enable a reliable and efficient engine design, which meets component durability with a minimum of parasitic air consumption. It is essential to understand the flow physics as well as network inter-dependency in order to minimise the flow consumption and yet, meeting engine operating requirements, as well as practical parts component design or manufacturing needs. In this connexion computer network codes containing model conceptions, which can accurately predict orifice flows, are essential. In an effort to provide usable further insight into flows across restrictors such as orifices this publication compares test results, CFD calculations and orifice loss calculation models from the open literature with the aid of transformation laws and contour plots. The influence of different geometric features is incorporated into a model for the calculation of discharge coefficients.


Author(s):  
Liang Wang ◽  
Ting Wang

Abstract Reverse-flow combustors have been used in heavy, land-based gas turbines for many decades. A sheath is typically installed over the external walls of the combustor and transition piece to provide enhanced cooling through hundreds of small impinging cooling jets, followed by a strong forced convection channel flow. However, this cooling is at the expense of a large pressure loss. With the modern advancements in metallurgy and thermal-barrier coating technologies, it may become possible to remove this sheath to recover the pressure loss without causing thermal damage to the combustor chamber and the transition piece walls. However, without the sheath, the flow inside the dump diffuser may exert nonuniformly reduced cooling on the combustion chamber and transition piece walls. The objective of this paper is to investigate the difference in flow pattern, pressure drop, and heat transfer distribution in the dump diffuser and over the outer surface of the combustor with and without a sheath. Both experimental and computational studies are performed and presented in Part 1 and Part 2, respectively. The experiments are conducted under low pressure and temperature laboratory conditions to provide a database to validate the computational model, which is then used to simulate the thermal-flow field surrounding the combustor and transition piece under elevated gas turbine operating conditions. The experimental results show that the pressure loss between the dump diffuser inlet and exit is 1.15% of the total inlet pressure for the non-sheathed case and 1.9% for the sheathed case. This gives a 0.75 percentage point (or 40%) reduction in pressure losses. When the sheath is removed in the laboratory, the maximum increase of surface temperature is about 35%, with an average increase of 13–22% based on the temperature scale of 23 K, which is the difference between the bulk inlet and the outlet temperatures.


Author(s):  
Sabrina Giuntini ◽  
Antonio Andreini ◽  
Bruno Facchini

Abstract It is here proposed a numerical procedure aimed to perform transient aero-thermo-mechanical calculations of large power generation gas turbines. Due to the frequent startups and shutdowns that nowadays these engines encounter, procedures for multi-physics simulations have to take into account the complex coupled interactions related to inertial and thermal loads, and seal running clearances. In order to develop suitable secondary air system configurations, guarantee structural integrity and maintain actual clearances and temperature peaks in pre-established ranges, the overall complexity of the structure has to be reproduced with a whole engine modelling approach, simulating the entire machine in the real operating conditions. In the proposed methodology the aerodynamic solution providing mass flows and pressures, and the thermo-mechanical analysis returning temperatures and material expansion, are performed separately. The procedure faces the aero-thermo-mechanical problem with an iterative process with the aim of taking into account the complex aero-thermo-mechanical interactions actually characterizing a real engine, in a robust and modular tool, combining secondary air system, thermal and mechanical analysis. The heat conduction in the solid and the fluid-solid heat transfer are computed by a customized version of the open source FEM solver CalculiX®. The secondary air system is modelled by a customized version of the embedded CalculiX® one-dimensional fluid network solver. In order to assess the physical coherence of the presented methodology the procedure has been applied to a test case representative of a portion of a real engine geometry, tested in a thermal transient cycle for the assessment of the interaction between secondary air system properties and geometry deformations.


Author(s):  
Stefan Busam ◽  
Axel Glahn ◽  
Sigmar Wittig

Increasing efficiencies of modern aero-engines are accompanied by rising turbine inlet temperatures, pressure levels and rotational speeds. These operating conditions require a detailed knowledge of two-phase flow phenomena in secondary air and lubrication oil systems in order to predict correctly the heat transfer to the oil. It has been found in earlier investigations that especially at high rotational speeds the heat transfer rate within the bearing chambers is significantly increased with negative effects on the heat to oil management. Furthermore, operating conditions are reached where oil coking and oil fires are more likely to occur. Therefore, besides heat sources like bearing friction and churning, the heat transfer along the housing wall has to be considered in order to meet safety and reliability criteria. Based on our recent publications as well as new measurements of local and mean heat transfer coefficients, which were obtained at our test facility for engine relevant operating conditions, an equation for the internal bearing chamber wall heat transfer is proposed. Nusselt numbers are expressed as a function of non-dimensional parameter groups covering influences of chamber geometry, flow rates and shaft speed.


Author(s):  
Luca Bozzi ◽  
Enrico D’angelo

High turn-down operating of heavy-duty gas turbines in modern Combined Cycle Plants requires a highly efficient secondary air system to ensure the proper supply of cooling and sealing air. Thus, accurate performance prediction of secondary flows in the complete range of operating conditions is crucial. The paper gives an overview of the secondary air system of Ansaldo F-class AEx4.3A gas turbines. Focus of the work is a procedure to calculate the cooling flows, which allows investigating both the interaction between cooled rows and additional secondary flows (sealing and leakage air) and the influence on gas turbine performance. The procedure is based on a fluid-network solver modelling the engine secondary air system. Parametric curves implemented into the network model give the consumption of cooling air of blades and vanes. Performances of blade cooling systems based on different cooling technology are presented. Variations of secondary air flows in function of load and/or ambient conditions are discussed and justified. The effect of secondary air reduction is investigated in details showing the relationship between the position, along the gas path, of the upgrade and the increasing of engine performance. In particular, a section of the paper describes the application of a consistent and straightforward technique, based on an exergy analysis, to estimate the effect of major modifications to the air system on overall engine performance. A set of models for the different factors of cooling loss is presented and sample calculations are used to illustrate the splitting and magnitude of losses. Field data, referred to AE64.3A gas turbine, are used to calibrate the correlation method and to enhance the structure of the lumped-parameters network models.


Author(s):  
Marco Mantero ◽  
Alessandro Vinci ◽  
Luca Bozzi ◽  
Enrico D’Angelo

In order to achieve significant secondary air savings in heavy duty gas turbines, a remarkable item of improvement is the reduction of seal flows for turbine stator-rotor cavities. The optimization of such flows allows to avoid waste of air, obligatory with standard labyrinth seals, to ensure the minimum sealing flow rate in all operating conditions. Based on the experience gained in the design of sealing system of stator-rotor cavities with standard seals, the project of installation of inter-stage brush-seals was undertaken incorporating such devices into the vane seal rings of 2nd and 3rd turbine stages of a AE94.3A Gas Turbine (GT). The paper offers a detailed description of the installation project. The following describes in detail the design flow process and the calculation methodologies used, step by step, to define the geometry of brush-seals in order to ensure mechanical integrity and durability, needed in the commercial operation, without thereby affecting the performance. The first prototype of brush-seal devices has been installed on a AE94.3A4 unit of the Ansaldo fleet. In order to verify the behavior of stator-rotor sealing system, in particular in terms of temperature and pressure variations, vane seal rings have been equipped with special instrumentation. A series of tests to optimize the set points of bleed control valves was carried out.


Author(s):  
Ronald S. Bunker

The advancement of turbine cooling has allowed engine design to exceed normal material temperature limits, but it has introduced complexities that have accentuated the thermal issues greatly. Cooled component design has consistently trended in the direction of higher heat loads, higher through-wall thermal gradients, and higher in-plane thermal gradients. The present discussion seeks to identify ten major thermal issues, or opportunities, that remain for the turbine hot gas path today. These thermal challenges are commonly known in their broadest forms, but some tend to be little discussed in a direct manner relevant to gas turbines. These include uniformity of internal cooling, ultimate film cooling, micro cooling, reduced incident heat flux, secondary flows as prime cooling, contoured gas paths, thermal stress reduction, controlled cooling, low emission combustor-turbine systems, and regenerative cooling. Evolutionary or revolutionary advancements concerning these issues will ultimately be required in realizable engineering forms for gas turbines to breakthrough to new levels of performance. Herein lies the challenge to researchers and designers. It is the intention of this summary to provide a concise review of these issues, and some of the recent solution directions, as an initial guide and stimulation to further research.


Sign in / Sign up

Export Citation Format

Share Document