The Use of a Circumferentially Nonuniform Stator to Attenuate Harmful Aerodynamic and Mechanical Interactions in an Advanced Mixed Flow Splittered Rotor/Tandem Variable Stator LP Compressor

Author(s):  
M. T. Barton ◽  
D. P. Gentile

A potential flow computer model that can handle blade row interaction problems has been used to analyze the circumferential static pressure distribution at the trailing edge plane of an advanced mixed flow splittered rotor low pressure compressor produced by a downstream tandem stator/strut system. The computer model is based on the Douglas-Neumann formulation and features a powerful automated optimization feature which can define a restagger pattern that will either minimize stator blade-to-blade loading differences or minimize the circumferential static pressure nonuniformity on a preselected axial plane. The latter approach was used presently to design a circumferentially nonuniform stagger angle distribution for the second row of the tandem stator that reduced the circumferential static pressure variation, and consequently its harmonic excitation, on the upstream rotor. Comparison between the predicted static pressure distribution for the baseline case (with uniform stagger angles) and the optimized design showed a dramatic reduction in the circumferential pressure variation. Fourier analyses of the pressure distributions confirmed a substantial decrease in the magnitude of the harmonic index thought to be responsible for the observed severe rotor vibration. The analytical results were confirmed by back-to-back engine tests of the baseline and restaggered tandem stators, where light probe measurements of splitter blade synchronous response showed a proportional decrease in rotor response for the optimized stator configuration. The restagger was implemented quickly and easily using simple modifications to the stator unison ring. With the high splitter blade deflections reduced to an acceptable level, the engine was able to safely accelerate through the former prohibited speed range and continue with the planned test sequence. The restaggered stator design and test effort, from initial problem statement through a successful demonstration test in the gas generator, was accomplished in less than 6 weeks.

Author(s):  
Markland G. Jones ◽  
Michael T. Barton ◽  
Walter F. O’Brien

A potential flow computer model that can handle blade row interaction problems has been used to analyze the circumferential static pressure distribution at the trailing edge plane of the last rotor in an axial compressor which is produced by a downstream stator/strut system. The computer model is based on the Douglas-Neumann formulation. The code was used to design a circumferentially nonuniform stagger angle distribution for the stator that reduced the static pressure disturbance on the rotor. The predicted circumferential static pressure distribution and its resulting frequency content at the rotor trailing edge station for the baseline (uniform circumferential stagger angles) stator and for the optimized stator are compared to static pressure data and derived frequency content from engine tests of each configuration. The results show good agreement between the model predictions and the test data. The results are further confirmed by measurements of rotor strain levels with the baseline stator and with the optimized stator, which show a proportional decrease in rotor strain for the optimized stator configuration. Since incorporation of this low-cost modification, there has been no evidence of vibratory induced rotor distress, thereby improving engine reliability and maintainability and enhancing customer satisfaction.


Author(s):  
Fan Yang ◽  
Chao Liu ◽  
Fangping Tang

The three-dimensional flow inside a mixed-flow pump system was simulated by using CFX software. The Shear Stress Transport turbulent equation which combined k-ε and k-ω turbulent model was applied. The flow field in volute and discharge passage of the pump system was obtained and the hydraulic performances of the pump system were predicted. The velocity and pressure distribution in pump system were analyzed. From the calculation results it is evident that the flow in the double helix volute passage is a spiral movement combining axial and rotary flow; the static pressure distribution in the volute is symmetric; the uniformity of axial velocity distribution and velocity-weighted average swirl angle at the outlet section are relatively low; and static pressure distribution on pump blade surface is regular with higher static pressure on pressure side and lower one on the suction side. The axial forces decrease gradually with the decrease of lifting head and the radial forces decrease first and then increase. A model test of the pump system was conducted to verify the calculation results. The pressure fluctuation at certain sections of the pump system was measured from the model test. A good agreement was found for lifting head between calculated and measured results. While the deviation of the efficiency between calculated and measured results does exist in non design points which need to be improved.


1994 ◽  
Vol 116 (2) ◽  
pp. 327-332 ◽  
Author(s):  
T. Green ◽  
A. B. Turner

The upstream wheelspace of an axial air turbine stage complete with nozzle guide vanes (NGVs) and rotor blades (430 mm mean diameter) has been tested with the objective of examining the combined effect of NGVs and rotor blades on the level of mainstream ingestion for different seal flow rates. A simple axial clearance seal was used with the rotor spun up to 6650 rpm by drawing air through it from atmospheric pressure with a large centrifugal compressor. The effect of rotational speed was examined for several constant mainstream flow rates by controlling the rotor speed with an air brake. The circumferential variation in hub static pressure was measured at the trailing edge of the NGVs upstream of the seal gap and was found to affect ingestion significantly. The hub static pressure distribution on the rotor blade leading edges was rotor speed dependent and could not be measured in the experiments. The Denton three-dimensional C.F.D. computer code was used to predict the smoothed time-dependent pressure field for the rotor together with the pressure distribution downstream of the NGVs. The level and distribution of mainstream ingestion, and thus the seal effectiveness, was determined from nitrous oxide gas concentration measurements and related to static pressure measurements made throughout the wheelspace. With the axial clearance rim seal close to the rotor the presence of the blades had a complex effect. Rotor blades in connection with NGVs were found to reduce mainstream ingestion seal flow rates significantly, but a small level of ingestion existed even for very high levels of seal flow rate.


Author(s):  
Peng Shan ◽  
Jingyuan Wang ◽  
Zhentao Lv

A new aerodynamic design strategy of the S-shaped transition duct between two compressor components was studied. Based on the controlled wall pressure gradient distribution and the wall velocity distribution, a semi-inverse problem of the transition duct was proposed, the corresponding inverse and direct approach codes were developed. To verify the feasibility of this method, two axial-centrifugal compressor transition ducts were designed. The results show that the static pressure distribution on the inner wall and the duct geometry both can be controlled freely by adjusting the inverse design parameters. The designed inner wall pressure distribution can be realized through a numerical matching procedure of the outer wall geometry based on the direct problem. The new design method is practicable that, without searching the optimal solution of the static pressure distribution of the inner wall, the total pressure coefficient can be at least 0.92.


2014 ◽  
Vol 7 (4) ◽  
pp. 293-297 ◽  
Author(s):  
David Pomarino ◽  
Andrea Pomarino

In literature, one finds little scientific statements regarding plantar static pressure distribution in healthy individuals. Miscellaneous studies, however, characterize pathologies of feet and associate those with abnormal static or dynamic plantar load sharing. Our study reveals that healthy individuals show significant age-dependent differences in forefoot and rear foot load measured in standing position. The forefoot and rear foot load of 238 female and 193 male individuals aged between 2 and 69 years were measured. Using a pressure distribution measurement platform, the measurements were taken barefooted in standing position. Those measurements are presented as percentage of the overall load. The measurements within the age groups A1 (2-6 years), A2 (7-10 years), and A3 (11-69 years) showed significantly different forefoot loading means of the left foot (A1, 19.9%; A2, 28.2%; A3, 39.7%) and the right foot (A1, 22.6%; A2, 29.7%; A3, 39.6%). The forefoot loadings are graphically displayed as a function of the percentiles 5, 10, 25, 50, 75, 90, and 95. Forefoot loadings are referred to as “prominent” if the measured values lie off the interquartile range; if either below the percentile 10 or above 90 the loadings are referred to as “very prominent.” Our study contains significant data regarding the extent of the static load sharing of the forefoot and rear foot of healthy individuals; the data are suited for being standard values to evaluate plantar load sharing. Levels of Evidence: Diagnostic Level IV: Case series


1980 ◽  
Vol 31 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Edward G.U. Band ◽  
Peter R. Payne

SummaryThe classic equations for inviscid flow about an ellipsoid are employed to compute the corresponding static pressure distribution which can then be applied to a number of practical problems. The tension in the skin of a dirigible, the gross pressure distribution around a man in an open ejection seat, the aerodynamic lift on an air cushion vehicle, automobile or high speed boat, the “squatting” of a ship, are all examples of practical applications. A remarkable result from the theory is that the lowest pressure, that around the equator normal to the flow, is always constant around the equator, no matter how much disparity there is between the semi-axes b and c.


Sign in / Sign up

Export Citation Format

Share Document