Numerical Investigation of the Effect of Roughness and Passing Wakes on LP Turbine Blades Performance

Author(s):  
Roberto Pacciani ◽  
Ennio Spano

A quasi-three-dimensional, blade-to-blade, time-accurate, viscous solver has been used to study the effects of blade surface roughness elements, and incoming bar wakes on blade loading and losses of modern LP blade cascades at low Reynolds number. The T106 and VK1-T2 cascades, recently tested experimentally at the Von Karman Institute, were selected as test cases. A simplified geometrical model was adopted for the roughness element, in order to incorporate it in quasi-3D analyses using a single grid structure. Good agreement with experimental data in terms of blade loading distributions and losses was found using a low-Reynolds number formulation of Menter’s SST, k-ω model. The blade performance improvements, expected in the presence of roughness elements or incoming wakes, were correctly predicted by the calculations. The basic flow mechanisms leading to such improvements was recognized in the suction side separation reduction, which was satisfactorily reproduced in the numerical analisys.

Author(s):  
Hossein Jabbari ◽  
Esmaeili Ali ◽  
Mohammad Hasan Djavareshkian

Since laminar separation bubbles are neutrally shaped on the suction side of full-span wings in low Reynolds number flows, a roughness element can be used to improve the performance of micro aerial vehicles. The purpose of this article was to investigate the leading-edge roughness element’s effect and its location on upstream of the laminar separation bubble from phase portrait point of view. Therefore, passive control might have an acoustic side effect, especially when the bubble might burst and increase noise. Consequently, the effect of the leading-edge roughness element features on the bubble’s behavior is considered on the acoustic pressure field and the vortices behind the NASA-LS0417 cross-section. The consequences express that the distribution of roughness in the appropriate dimensions and location could contribute to increasing the performance of the airfoil and the interaction of vortices produced by roughness elements with shear layers on the suction side has increased the sound frequency in the relevant sound pressure level (SPL). The results have demonstrated that vortex shedding frequency was increased in the presence of roughness compared to the smooth airfoil. Also, more complexity of the phase portrait circuits was found, retrieved from velocity gradient limitation. Likewise, the highest SPL is related to the state where the separation bubble phenomenon is on the surface versus placing roughness elements on the leading edge leads to a negative amount of SPL.


Author(s):  
Tatsuo Onishi ◽  
Ste´phane Burguburu ◽  
Olivier Dessornes ◽  
Yves Ribaud

A full three dimensional Navier-Stokes solver elsA developed by ONERA is used to design and study the aerothermodynamics of a MEMS-based micro turbine. This work is performed in the framework of micro turbomachinery project at ONERA. A few millimeter scale micro turbine is operated in a low Reynolds number regime (Re = 5,000∼50,000), which implies a more important influence of skin friction and heat transfer than the conventional large-scale gas turbine. The 2D geometry constraints due to the limitation of fabrication technology also distinguish the aerothermodynamic characteristics of a micro turbine from that of conventional turbomachinery. Thus, for the foundation of aerothermodynamic design of micro turbomachinery, understanding of low Reynolds number effects on the performance is required and then the design of the turbine geometry can be optimized. In this study, aero-thermodynamic effects at low Reynolds number and different stator/rotor configurations are examined with a prescribed wall temperature. Losses due to heat transfer to walls and skin friction are estimated and their effects on the operating performance are discussed. Power delivery to turbine blades is checked and found satisfactory to give the objective design value of more than 100W. The effects of turbine exhaust geometry and the number of blades on turbine performance are also discussed.


Author(s):  
M. Omri ◽  
S. Moreau ◽  
L. G. Fréchette

This paper presents the conjugate heat transfer in a submillimeter scale microturbine characterized by laminar yet highly three-dimensional flows. Such a miniature turbine is part of a MEMS (microelectromechanical system) power plant-on-a-chip currently under development for distributed power generation from waste heat. Adiabatic subsonic flows in the turbine have previously been studied numerically and are characterized by low Reynolds number laminar flow (Re < 2500) but with complex vortical structures. The present work addresses the influence of these flow structures on heat transfer, including the effect of the horseshoe and tip vortices. Calculations were done for tip clearance gaps equal to 0%, 5% and 10% blade height. Three different scenarios were considered: adiabatic walls, the hub and casing temperature of 573K or the hub at 573K and the casing at 450K, for incoming flow at 600K. The heat transfer is more variable in the suction side since dominant vortices are adjacent to this blade side. The heat flux even changes its sign where the vortices begin to separate from the suction side, indicating that gas cooled in the hub and casing boundary layers is transported on the blades by the horseshoe vortices. The tip vortex prevents the top passage vortex from interacting with the suction side, which eliminates the negative heat transfer in this region. Due to the dominant vortices, the Nusselt number is found to be a function of the thermal boundary conditions and cannot be predicted with traditional boundary layer correlations.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Rolf Sondergaard ◽  
Mitch Wolff ◽  
Rich Anthony

This paper presents experimental work comparing several Dielectric Barrier Discharge (DBD) plasma actuator configurations for low Reynolds number separation control. Actuators studied here are being investigated for use in a closed loop separation control system. The plasma actuators were fabricated in the U.S. Air Force Research Laboratory Propulsion Directorate’s thin film laboratory and applied to a low Reynolds number airfoil that exhibits similar suction surface behavior to those observed on Low Pressure (LP) Turbine blades. In addition to typical asymmetric arrangements producing downstream jets, one electrode configurations was designed to produce an array of off axis jets, and one produced a spanwise array of linear vertical jets in order to generate vorticity and improved boundary layer to freestream mixing. The actuators were installed on an airfoil and their performance compared by flow visualization, surface stress sensitive film (S3F), and drag measurements. The experimental data provides a clear picture of the potential utility of each design. Experiments were carried out at four Reynolds numbers, 1.4 × 105, 1.0 × 105, 6.0 × 104, and 5.0 × 104 at a-1.5 deg angle of attack. Data was taken at the AFRL Propulsion Directorate’s Low Speed Wind Tunnel (LSWT) facility.


1997 ◽  
Vol 08 (04) ◽  
pp. 985-997 ◽  
Author(s):  
Dewei Qi

The translation and rotation of non-spherical particles, such as ellipsoidal, cylindric or disk-like pigment particles, in a Couette flow system similar to a blade coating system in the paper industry6 have been successfully simulated by using the lattice-Boltzmann method combined with Newtonian dynamic simulations. Hydrodynamic forces and torques are obtained by the use of boundary conditions which match the moving surface of solid particles. Then Euler equations have been integrated to include three-dimensional rotations of the suspensions by using four quaternion parameters as generalized coordinates. The three-dimensional rotations have been clearly observed. Consequently, the motion of the particles suspended in fluids of both low-Reynolds-number and finite-Reynolds-number, up to several hundreds, has been studied. It appears that the 3D translation and rotation of the non-spherical particles are more clearly observed in a high-Reynolds-number fluid than in a low-Reynolds-number fluid.


1962 ◽  
Vol 14 (2) ◽  
pp. 284-304 ◽  
Author(s):  
F. P. Bretherton

According to Jeffery (1923) the axis of an isolated rigid neutrally buoyant ellipsoid of revolution in a uniform simple shear at low Reynolds number moves in one of a family of closed periodic orbits, the centre of the particle moving with the velocity of the undisturbed fluid at that point. The present work is a theoretical investigation of how far the orbit of a particle of more general shape in a non-uniform shear in the presence of rigid boundaries may be expected to be qualitatively similar. Inertial and non-Newtonian effects are entirely neglected.The orientation of the axis of almost any body of revolution is a periodic function of time in any unidirectional flow, and also in a Couette viscometer. This is also true if there is a gravitational force on the particle in the direction of the streamlines. There is no lateral drift. On the other hand, certain extreme shapes, including some bodies of revolution, will assume one of two orientations and migrate to the bounding surfaces or to the centre of the flow. In any constant slightly three-dimensional uniform shear any body of revolution will ultimately assume a preferred orientation.


Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


Sign in / Sign up

Export Citation Format

Share Document