The Influence of Heat Transfer Effects on Turbine Performance Characteristics

Author(s):  
A. G. Stamatis ◽  
K. Mathioudakis

A method allowing the evaluation of the effects related to heat transfer to the turbine blades on its performance characteristics is presented. The effects investigated are the change of passage dimensions, resulting from heat transfer and the change in flow field, exhibited mainly as a different boundary layer development. Change of hot gas temperature combined with cooling air temperature and possibly flow rate, result in a change of the temperature of the blade material, leading to dimension changes, because of the thermal expansion (dilatation). The changes in dimensions have a direct effect on turbine performance. An immediate consequence is a modification of the mass flow characteristic, due to a change of the throat area. Heat transfer also influences the properties of the gas flowing through the passage and in particular the characteristics of the boundary layers developing on the nozzle vanes and hub, tip endwals. Change of the thickness of this layer results in a change of blockage through the passage, a fact that influences directly the turbine flow function. The influence of both effects on turbine performance is studied. The study is performance oriented, aiming to the derivation of simplified models, which can be introduced in engine cycle decks.

1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


1970 ◽  
Vol 92 (3) ◽  
pp. 257-266
Author(s):  
D. A. Nealy ◽  
P. W. McFadden

Using the integral form of the laminar boundary layer thermal energy equation, a method is developed which permits calculation of thermal boundary layer development under more general conditions than heretofore treated in the literature. The local Stanton number is expressed in terms of the thermal convection thickness which reflects the cumulative effects of variable free stream velocity, surface temperature, and injection rate on boundary layer development. The boundary layer calculation is combined with the wall heat transfer problem through a coolant heat balance which includes the effect of axial conduction in the wall. The highly coupled boundary layer and wall heat balance equations are solved simultaneously using relatively straightforward numerical integration techniques. Calculated results exhibit good agreement with existing analytical and experimental results. The present results indicate that nonisothermal wall and axial conduction effects significantly affect local heat transfer rates.


Author(s):  
Shane Colón ◽  
Mark Ricklick ◽  
Doug Nagy ◽  
Amy Lafleur

Abstract Thermal barrier coatings (TBC) found on turbine blades are a key element in the performance and reliability of modern gas turbines. TBC reduces the heat transfer into turbine blades by introducing an additional surface thermal resistance; consequently allowing for higher gas temperatures. During the service life of the blades, the TBC surface may be damaged due to manufacturing imperfections, handling damage, service spalling, or service impact damage, producing chips in the coating. While an increase in aerofoil temperature is expected, it is unknown to what degree the blade will be affected and what parameters of the chip shape affect this result. During routine inspections, the severity of the chipping will often fall to the discretion of the inspecting engineer. Without a quantitative understanding of the flow and heat transfer around these chips, there is potential for premature removal or possible blade failure if left to operate. The goal of this preliminary study is to identify the major driving parameters that lead to the increase in metal temperature when TBC is damaged, such that more quantitative estimates of blade life and refurbishing needs can be made. A two-dimensional computational Conjugate Heat Transfer model was developed; fully resolving the hot gas path and TBC, bond-coat, and super alloy solids. Representative convective conditions were applied to the cold side to emulate the characteristics of a cooled turbine blade. The hot gas path properties included an inlet temperature of 1600 K with varying Mach numbers of 0.30, 0.59, and 0.80 and Reynolds number of 5.1×105, 7.0×105, and 9.0×105 as referenced from the leading edge of the model. The cold side was given a coolant temperature of 750 K and a heat transfer coefficient of 1500 W/m2*K. The assigned thermal conductivities of the TBC, bond-coat, and metal alloys were 0.7 W/m*K, 7.0 W/m*K, and 11.0 W/m*K, respectively, and layer thicknesses of 0.50 mm, 0.25 mm, and 1.50 mm, respectively. A flat plate model without the presence of the chip was first evaluated to provide a basis of validation by comparison to existing correlations. Comparing heat transfer coefficients, the flat plate model matched within uncertainty to the Chilton-Colburn analogy. In addition, flat plate results captured the boundary layer thickness when compared with Prandtl’s 1/7th power-law. A chip was then introduced into the model, varying the chip width and the edge geometry. The most sensitive driving parameters were identified to be the chip width and Mach number. In cases where the chip width reached 16 times the TBC thickness, temperatures increased by almost 30% when compared to the undamaged equivalents. Additionally, increasing the Mach number of the incoming flow also increased metal temperatures. While the Reynolds number based on the leading edge of the model was deemed negligible, the Reynolds number based on the chip width was found to have a noticeable impact on the blade temperature. In conclusion, this study found that chip edge geometry was a negligible factor, while the Mach number, chip width, and Reynolds number based on the chip width had a significant effect on the total metal temperature.


1953 ◽  
Vol 167 (1) ◽  
pp. 351-370 ◽  
Author(s):  
D. G. Ainley

A comprehensive series of tests have been made on an experimental single-stage turbine to determine the cooling characteristics and the overall stage performance of a set of air-cooled turbine blades. These blades, which are described fully in Part I of this paper had, internally, a multiplicity of passages of small diameter along which cool air was passed through the whole length of the blade. Analysis of the, test data indicated that, when a quantity of cooling air amounting to 2 per cent, by weight, of the total gas-flow through the turbine is fed to the row of rotor blades, an increase in gas temperature of about 270 deg. C. (518 deg. F.) should be permissible above the maximum allowable value for a row of uncooled blades made from the same material. The degree of cooling achieved throughout each blade was far from uniform and large thermal stresses must result. It appears, however, that the consequences of this are not highly detrimental to the performance of the present type of blading, it being demonstrated that the main effect of the induced thermal stress is apparently to transfer the major tensile stresses to the cooler (and hence stronger) regions of the blade. The results obtained from the present investigations do not represent a limit to the potentialities of internal air-cooling, but form merely a first exploratory step. At the same time the practical feasibility of air cooling is made apparent, and advances up to the present are undoubtedly encouraging.


Author(s):  
J. M. McDonough ◽  
V. E. Garzón ◽  
D. E. Schulte

Numerical results demonstrating the effect of film-cooling hole placement on turbulator heat transfer effectiveness in internal convective cooling air circuits of turbine blades in high-performance gas turbine engines is presented for a two-dimensional model problem. Of particular interest will be the performance of a new turbulence modeling formalism similar to large-eddy simulation (LES) but employing subgrid-scale models constructed from nonlinear discrete dynamical systems, and not requiring filtering of the resolved-scale governing equations. Computed results for temperature distribution, flow streamlines, pressure coefficient and heat transfer Stanton number are compared for three different cooling hole/turbulator configurations, and turbulence kinetic energy is compared with results from a standard k-ε model.


Author(s):  
Matthias Jungbluth ◽  
Vinay Jonnalagadda ◽  
Erwan Baleine ◽  
Mattias Broddega˚rd ◽  
Rolf Wilkenho¨ner ◽  
...  

The turbine section of state-of-the-art industrial gas turbines is exposed to the most severe conditions such as high temperatures, corrosive environments and high mechanical stresses for several tens of thousands of hours. To withstand these conditions, turbine blades and vanes have become the most sophisticated parts. This, together with advanced manufacturing technologies, strict quality requirements and maximum reliability demands, affects costs. Different design features have been realized in the past to meet the ambitious requirements, and are also under constant development. Blades and vanes made of superalloys with directionally-solidified or single-crystal structure are used to provide highest strengths at temperatures as near as possible to the hot gas temperature. The high integrity and conformity of the parts are required to realize the material potential. Different advanced diagnostic methods are applied to ensure these over time. Another way to increase the operating temperatures of gas turbines is the application of corrosion and thermal protection coatings for one or several rows of the blades and vanes. Deviations in the specified coating thickness tend to reduce the lifetime of such coatings significantly. Hence, the monitoring of this property during the manufacturing requires special nondestructive diagnostic measures. Service exposed parts, which need to be refurbished when the protective coatings are spent, offer a significant operation potential after refurbishment. To guarantee the design parameters during the next service interval, several nondestructive material evaluation methods are available for the necessary part property assessment. Multifrequency Eddy Current has proven itself as an appropriate NDE technique to accomplish the above diagnostic requirements. The paper will give an overview of results gained at Siemens with model based Eddy Current methods using measurement systems developed by Jentek Sensors Inc., USA, and CESI, Italy. Potential applications and limitations of the method also will be discussed.


Author(s):  
J. Liu ◽  
A. Weaver ◽  
T. I-P. Shih ◽  
J. Klinger ◽  
B. Heneveld ◽  
...  

The trailing-edge region of turbine airfoils is difficult to cool. In this study, CFD conjugate analysis based on the shear-stress transport (SST) turbulence model is used to study the flow and heat transfer in a triple-impingement cooling configuration. Parameters studied include the pressure drop across the configuration (1, 2, 3, 4, and 5 bars), and the heat transfer coefficient on the hot-gas side (2,000, 4,000, and 6,000 W/m2-K). In all cases with conjugate analysis, the temperature of the coolant at the inlet of the cooling passage is 673 K, the external hot-gas temperature is 1,755 K, and the static pressure at the exit of cooling passage is 25 bars. Simulations were also performed in which the temperature of the cooling-passage wall is kept constant at 1,173 K. Results are generated to show the nature of the flow induced by the triple impingement and how that flow affects heat transfer to the turbine material.


1985 ◽  
Vol 107 (1) ◽  
pp. 54-59 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

Heat transfer and boundary layer measurements were derived from flows over a cooled flat plate with various free-stream turbulence intensities (Tu = 1.6–11 percent), favorable pressure gradients (k = νe/ue2•due/dx = 0÷6•10−6) and cooling intensities (Tw/Te = 1.0–0.53). Special interest is directed towards the effects of the dominant parameters, including the influence on laminar to turbulent boundary layer transition. It is shown, that free-stream turbulence and pressure gradients are of primary importance. The increase of heat transfer due to wall cooling can be explained primarily by property variations as transition, and the influence of free-stream parameters are not affected.


Sign in / Sign up

Export Citation Format

Share Document