On Effects of Impeller-Diffuser Interaction in the “Radiver” Centrifugal Compressor

Author(s):  
Paolo Boncinelli ◽  
Mirco Ermini ◽  
Samuele Bartolacci ◽  
Andrea Arnone

In the present work, effects of impeller-diffuser interaction were investigated in the “Radiver” centrifugal compressor stage exploiting CFD techniques. Two diffuser geometries, differing in the radial gap between impeller exit and diffuser inlet, were analyzed by means of both steady and unsteady computations at two different operating conditions. Physical mechanisms by which interaction affects the flow field were identified and discussed. Flow unsteadiness was found to marginally affect the stage performance, but to have a relevant impact on the flow field.

Author(s):  
Rui Zhu ◽  
Yaping Ju ◽  
Chuhua Zhang

No real centrifugal compressor can exactly conform to its design geometry and expected operating conditions due to the uncertainties existing in the manufacturing and operational processes. Such uncertainties have been increasingly recognised to be detrimental to compressor performance. However, quite few studies have focused on the combined effects of geometric and operational uncertainties on compressor performance, and the underlying flow mechanism even remains unclear. In this context, we here present an uncertainty analysis of a centrifugal compressor stage, with both geometric and operational uncertainties taken into account. With the combination of CFD simulation and nonintrusive sparse grid based stochastic collocation methods, the combined and individual effects of total inlet temperature, total inlet pressure, outlet mass flow, impeller tip clearance and hub fillet radius on the stage/impeller performance are quantified and analysed. Particular attention is paid to elucidating the compressor performance variations through flow field and energy decomposition analyses. Results show that the considered uncertainties exert more influence on the compressor stage performance rather than on the impeller performance. Amongst the examined uncertainties, the impeller tip clearance contributes the most to the stage performance. The underlying mechanism lies in that the wake of impeller tip clearance produces distorted flow downstream towards the diffuser, which causes complicated vortex structures and less conversion of kinetic energy to pressure rise in the diffuser passage. The present study lays a theoretical foundation for the further uncertainty quantification and robust design of centrifugal compressors against various sources of uncertainties.


Author(s):  
Timothy C. Allison ◽  
Natalie R. Smith ◽  
Robert Pelton ◽  
Jason C. Wilkes ◽  
Sewoong Jung

Successful implementation of sCO2 power cycles requires high compressor efficiency at both the design-point and over a wide operating range in order to maximize cycle power output and maintain stable operation over a wide range of transient and part-load operating conditions. This requirement is particularly true for air-cooled cycles where compressor inlet density is a strong function of inlet temperature that is subject to daily and seasonal variations as well as transient events. In order to meet these requirements, a novel centrifugal compressor stage design was developed that incorporates multiple novel range extension features, including a passive recirculating casing treatment and semi-open impeller design. This design, presented and analyzed for CO2 operation in a previous paper, was fabricated via direct metal laser sintering and tested in an open-loop test rig in order to validate simulation results and the effectiveness of the casing treatment configuration. Predicted performance curves in air and CO2 conditions are compared, resulting in a reduced diffuser width requirement for the air test in order to match design velocities and demonstrate the casing treatment. Test results show that the casing treatment performance generally matched computational fluid dynamics (CFD) predictions, demonstrating an operating range of 69% and efficiency above air predictions across the entire map. The casing treatment configuration demonstrated improvements over the solid wall configuration in stage performance and flow characteristics at low flows, resulting in an effective 14% increase in operating range with a 0.5-point efficiency penalty. The test results are also compared to a traditional fully shrouded impeller with the same flow coefficient and similar head coefficient, showing a 42% range improvement over traditional designs.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

The flow in a radial vaneless diffuser downstream of a centrifugal compressor is highly complex, as the flow is turbulent, unsteady, viscous, and three-dimensional. Depending on the initial state of the end-wall boundary layers and the diffuser length, the flow may become fully developed or may separate from one of the walls. Therefore, to improve the diffuser performance, it is important to understand the flow field in the diffuser in detail. As the diffuser width is generally very small for most radial stages and an adverse pressure gradient exists, secondary flows are generated, making the flow fields more complicated. In addition, skewed boundary layers form on the wall surfaces. As flowrate is reduced, the flow field becomes more complicated and leads to rotating stall. This article presents detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller. Usually, centrifugal compressors with radial impellers are designed in the flow coefficient (ϕ) range ϕ = 0.01 - 0.16. Often, the need arises to design higher flow coefficient, ϕ, radial stages. Detailed measurements were carried out in the vaneless diffuser at seven radial positions downstream of a radial impeller designed for a very high flow coefficient of ϕ = 0.2. The experimental investigation was carried at four rotational speeds 13 000, 15 500, 18 000, and 20 500 r/min, but only the result of 20 500 r/min at near-design-point flowrate (5.11 kg/s) is reported in this article.


Author(s):  
K. Bammert ◽  
M. Jansen ◽  
M. Rautenberg

Results from an experimental study of the influence of the diffuser inlet shape on the performance of the diffuser and the whole compressor stage are presented. The investigations were carried out using a single stage centrifugal compressor. Three different vaned diffusers were tested. From detailed flow field measurements the influence of the diffuser inlet shape on the performance of the essential components of the compressor stage, i.e. the impeller, the diffuser, and the collecting chamber was analyzed. It is shown that the reaction of the vaned diffuser on the efficiency of the impeller is only weak but the losses in the collecting chamber are considerably affected by the used diffuser types.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
N. Bulot ◽  
I. Trébinjac

The study is focused on the analysis of the flow structure within the vaned diffuser of a transonic high-pressure centrifugal compressor stage. The analyzed time-dependent flow field comes from unsteady computations of the stage using a 3D Navier-Stokes code with a phase-lagged technique, at an operating point close to the design point. A good comparison with available experimental data allowed the use of CFD for investigating the details of the flow in order to assess the effect of the unsteadiness in the diffuser flow development. Applying various data processing techniques, it is shown that the unsteadiness is due to the jet and wake flow structure emerging from the radial impeller and to the pressure waves brought about by the interaction between the vane bow shock wave and the impeller blade. The interaction between the pressure waves and the vane pressure side boundary layer leads to a pulsating behavior of separated bubbles within the diffuser. The pressure waves are similar in shape and strength whatever the blade height. The observed change in the flow field from hub to tip is due to migration of the low momentum fluid contained in the wake toward the pressure side/hub corner.


1999 ◽  
Vol 121 (4) ◽  
pp. 763-771 ◽  
Author(s):  
F. Justen ◽  
K. U. Ziegler ◽  
H. E. Gallus

The behavior of vaned radial diffusers is generally considered to be due to the flow phenomena in the vaneless and the semi-vaned space in the diffuser inlet region. Even considering unsteady aspects, the adjacent diffuser channel is regarded as less important. The flat wedge vaned diffuser of the centrifugal compressor stage investigated allows an independent continuous adjustment of the diffuser vane angle and the radial gap between impeller outlet and diffuser vane inlet, so that information about the importance of these geometric parameters can be obtained. The time-dependent pressure distribution on the diffuser front wall and on the suction and pressure surfaces of the diffuser vanes reveal that in the semi-vaned space mainly the region near the vane suction side is influenced by the unsteady impeller-diffuser interaction. Downstream in the diffuser channel the unsteadiness does not decay. Here, pressure fluctuations are appearing that are distinctly higher than the pressure fluctuations in the vaneless space. An estimation of the influence of the unsteadiness on the operating performance of the centrifugal compressor stage is made by measurements at choke and surge limit for different diffuser geometries.


Author(s):  
A. Koumoutsos ◽  
A. Tourlidakis ◽  
R. L. Elder

This paper describes the unsteady flow analysis in a centrifugal compressor stage using a three dimensional CFD algorithm. The flow unsteadiness arising from the interaction between the impeller and the diffuser has been analysed using an algorithm suitable for equal or multiple number of rotor and diffuser blades. The multi-block, structured grid CFD code TASCflow was used as a basis and algorithm development was undertaken to provide the required capability of modelling the unsteady interactions of the impeller and the diffuser. The centrifugal compressor stage studied consists of an impeller with splitters and a vaned diffuser. The results presented are for off-design flow conditions where some experimental results were available for comparison. The results obtained for the steady-state model show a good agreement with the measurements. In general the unsteady flow field obtained show a reasonable agreement with experimental data and demonstrates significant differences when compared to the steady state results especially in terms of the velocity field. A detailed analysis of the unsteady flow field is carried out using Fourier transforms of velocity and pressure at various locations of the flow field and the level of unsteadiness is determined as distributed to various frequencies. The unsteadiness in the impeller passage is much less than in the diffuser where a strong coupling is predicted in the vaneless space.


Author(s):  
Burkhard Josuhn-Kadner

A centrifugal compressor stage has been investigated mainly experimentally for aerodynamic stage optimization. The rotor consists of a separate inducer with 14 blades and an impeller with 28 blades. Both rotor components can be locked with each other at different circumferential positions thus, forming either a conventional splitter blade rotor or a tandem bladed rotor of adjustable geometry. The influence of the tandem blade geometry on the rotor and stage characteristics is studied in detail. Laser-2-Focus-System measurements were performed at nine locations all over the rotor taking three different circumferential inducer positions into account. The improvement with the tandem blade configuration on the rotor and stage characteristics is small but significant differences in the flow field of the two different impeller channels in the rear and exit part of the rotor are recognizable. The velocity differences of the jet/wake flow are reduced by using tandem blades which lead to a slight increased stage pressure ratio and surge margin.


Sign in / Sign up

Export Citation Format

Share Document