Developments and Experiences With Pulsation Measurements for Heavy-Duty Gas Turbines

Author(s):  
Hanspeter Zinn ◽  
Michael Habermann

The dynamical combustion processes (pulsations) of heavy-duty gas turbines must be supervised by suitable instrumentation for optimal operation of the engine regarding emissions and component life. But the hostile environment of the combustor makes it difficult to perform the measurements. There are two possible approaches to measure the combustor pulsations. Either a high temperature sensor is placed as close as possible to the combustion chamber to measure the acoustics directly (Cavity Type Probe), or the acoustic signal is led to the outside of the engine by means of a reflection free waveguide, where a dynamic pressure sensor picks up the passing signal (Long Line Probe). Both approaches were developed and investigated in detail. This paper describes the past and current efforts in refining the probe designs for use in the harsh operational environment while maintaining sensor accuracy, measurement range and lifetime as a rugged probe. Theoretical and laboratory investigations were undertaken to increase the useable frequency range of the Cavity Type Probe up to 8kHz under engine operation conditions. This was made possible with a smaller high temperature transducer, which is the result of a cooperative development project with a sensor manufacturer. Experiences with both probe concepts on Alstom’s GT26 Test Power Plant in Birr and on field engines provided clear confirmation that the Cavity Type Probe design with an advanced sensor now fulfils all initially defined requirements of acoustic combustion measurements on heavy-duty gas turbines. On the contrary, the waveguide design principle has fundamental limitations in the direct measurement of the combustion acoustics at gas turbine operating conditions.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


Author(s):  
G. L. Lapini ◽  
M. Zippo ◽  
G. Tirone

The idea of measuring the electrostatic charge associated with the debris contained in the exhaust gases of a gas turbine (sometimes named EDMS, Engine Debris Monitoring System, or EEMS, Electrostatic Engine Monitoring System) has been demonstrated by several authors as an interesting diagnostic tool for the early warning of possible internal distresses (rubs, coating wear, hot spots in combustors, improper combustion, etc.) especially for jet engines or aeroderivative gas turbines. While potentially applicable to machines of larger size, the possibility of transferring this monitoring technology to heavy-duty gas turbines, which have exhaust ducts much bigger in size and different operating conditions, should be demonstrated. The authors present a synthesis of their experience and of the most significant data collected during a demonstration program performed on behalf of ENEL, the main Italian electric utility. The purpose of this program was to test this concept in real operating conditions on large turbines, and hence to evaluate the influence of the operating conditions on the system response and to assess its sensitivity to possible distresses. A good amount of testing has been performed, during this program, both on a full scale combustion rig, and on two machines rated at about 120 MW, during their normal and purposely perturbed operating conditions in a power plant. The authors, on the basis of the encouraging results obtained to date, comment on the work still required to bring this technology to full maturity.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


Author(s):  
Hiroaki Endo ◽  
Robert Wetherbee ◽  
Nikhil Kaushal

An ever more rapidly accelerating trend toward pursuing more efficient gas turbines pushes the engines to hotter and more arduous operating conditions. This trend drives the need for new materials, coatings and associated modeling and testing techniques required to evaluate new component design in high temperature environments and complex stress conditions. This paper will present the recent advances in spin testing techniques that are capable of creating complex stress and thermal conditions, which more closely represent “engine like” conditions. The data from the tests will also become essential references that support the effort in Integrated Computational Materials Engineering (ICME) and in the advances in rotor design and lifing analysis models. Future innovation in aerospace products is critically depended on simultaneous engineering of material properties, product design, and manufacturing processes. ICME is an emerging discipline with an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple scales (Structural, Macro, Meso, Micro, Nano, etc). The focus of the ICME is on the materials; understanding how processes produce material structures, how those structures give rise to material properties, and how to select and/or engineer materials for a given application [34]. The use of advanced high temperature spin testing technologies, including thermal gradient and thermo-mechanical cycling capabilities, combined with the innovative use of modern sensors and instrumentation methods, enables the examination of gas turbine discs and blades under the thermal and the mechanical loads that are more relevant to the conditions of the problematic damages occurring in modern gas turbine engines.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Alex Lostetter ◽  
Marcelo Schupbach ◽  
John Fraley ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the hundreds of millions of dollars. In addition, the operational flexibility that may be obtained by knowing the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. Siemens, Rove Technical Services, and Arkansas Power Electronics International are working together to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in the hot gas path turbine sections. The approach involves embedding sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The results presented will include those from advanced, harsh environment sensor and wireless telemetry component development activities. In addition, results from laboratory and high temperature rig and spin testing will be discussed.


Author(s):  
Alexander N. Arkhipov ◽  
Vladimir V. Karaban ◽  
Igor V. Putchkov ◽  
Guenter Filkorn ◽  
Andreas Kieninger

The evaluation of the blading clearance at the design stage is important for heavy duty gas turbine efficiency. The minimum clearance value at base load is limited by the pinch point clearance during startup and/or shutdown. Therefore, transient analysis is necessary for different operating conditions. 3D transient analysis of a whole engine is labor-intensive; however 2D axisymmetric analysis does not allow consideration of different 3D effects (e.g. twisting, bending, ovality, rotor alignment). In order to overcome these cost and time limitations, the combination of 2D, axisymmetric, whole-engine model results and the scaled deflections caused by different 3D effects is used for the axial and radial clearance engineering assessment during engine operation. The basic rotor and stator closures are taken from the transient analysis using a 2D finite element (FE) model composed of axisymmetric solid and plane stress elements. To take into account 3D effects of airfoil twisting and bending, the 3D FE displacements of the blade are included in the clearance evaluation process. The relative displacements of airfoil tip and reference point at the blade or vane hub are taken from 3D steady-state FE analyses. Then the steady-state displacements of the airfoils are scaled for transient conditions using the proposed technique. Different 3D rotor / stator effects (cold-build clearances and their tolerances, rotor position with respect to stator after assembly, casing bending, deformations of compressor and turbine vane carrier inducing of casing ovalization, exhaust gas housing movements, movements of the rotor in bearings and CVC and TVC support, etc.) are also included as a contributor to the clearances. The results of the calculations are analyzed and compared with good agreements to the clearances measured in engine testing under real operation conditions. The proposed methodology allows assessing the operating clearances between the stator and rotor during the design phase. Optimization of the running clearance is one key measure to upgrade and improve the engine performance during operating experience.


2016 ◽  
Vol 808 ◽  
pp. 245-257 ◽  
Author(s):  
E. Boujo ◽  
A. Denisov ◽  
B. Schuermans ◽  
N. Noiray

Thermoacoustic instabilities in gas turbines and aeroengine combustors fall within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by postprocessing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.


Author(s):  
Erio Benvenuti

This axial compressor design was primarily focused to increase the power rating of the current Nuovo Pignone PGT10 Heavy-Duty gas turbine by 10%. In addition, the new 11-stage design favourably compares with the existing 17-stage compressor in terms of simplicity and cost. By seating the flowpath and blade geometry, the new aerodynamic design can be applied to gas turbines with different power ratings as well. The reduction in the stage number was achieved primarily through the meridional flow-path redesign. The resulting higher blade peripheral speeds achieve larger stage pressure ratios without increasing the aerodynamic loadings. Wide chord blades keep the overall length unchanged thus assuring easy integration with other existing components. The compressor performance map was extensively checked over the speed range required for two-shaft gas turbines. The prototype unit was installed on a special PGT10 gas turbine setup, that permitted the control of pressure ratio independently from the turbine matching requirements. The flowpath instrumentation included strain-gages, dynamic pressure transducers and stator vane leading edge aerodynamic probes to determine individual stage characteristics. The general blading vibratory behavior was proved fully satisfactory. With minor adjustments to the variable stator settings the front stage aerodynamic matching was optimized and the design performance was achieved.


Author(s):  
Scott T. Cloyd ◽  
Arthur J. Harris

The gas turbine industry has adopted the practice of rating engine performance at ISO standard conditions; 15 degrees C, 1.033 ata, 100% methane fuel, and no inlet or exhaust system pressure losses with power output referenced to the generator terminals. (ISO, 1989) While these standards are useful in putting original equipment manufacturers’ (OEM’s) ratings on an equivalent basis it is not likely that an engine would be installed or tested under these types of conditions. To account for variations in engine operating conditions equipment manufacturers’ have utilized performance correction curves to show the influence of changing one operating parameter while holding all others constant. The purpose of this paper is to review the correction curves that are used for initial project application studies, and the variations to the curves that occur when a unit is put into service as a result of the methods used to control engine operation. Sample corrections curves and a brief explanation of the correction curves are presented to illustrate the variations in the curves. The paper also presents a new method for illustrating the influence of fuel heating value and composition on engine performance for natural gas and oil fuel. All data presented is for a single shaft, constant speed gas turbine. Two shaft or three shaft gas turbines will not have these correction curves.


Sign in / Sign up

Export Citation Format

Share Document