Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels

Author(s):  
Jianfan Wu ◽  
Phillip Brown ◽  
Ihor Diakunchak ◽  
Anil Gulati ◽  
Martin Lenze ◽  
...  

Integrated Gasification Combined Cycle (IGCC) technology makes possible the utilization of low cost coal and opportunity fuels, such as petroleum coke, residual oil and biomass, for clean efficient and cost effective electricity generation. Siemens is a leading supplier of products and services for IGCC plants and it is adapting its most advanced gas turbines for successful integration into IGCC plants. To expedite this, Siemens is pursuing combustion system development for application in IGCC plants operating on syngas/hydrogen fuels. Detailed combustion system testing has been carried out during 2005 and 2006 on syngas/hydrogen fuels derived from different feed stocks and gasification processes. The test programs addressed both the F- and G-Class firing temperatures and operating conditions. Fuel transfer capability to and from natural gas, which is the startup and backup fuel, and syngas was explored over the operating range. Optimization studies were carried out with different diluent (H2O and N2) addition rates to determine the effect on emissions and operability. The focus of this development was to ensure that only combustion system modifications would be required for successful enriched hydrogen syngas fuel operation. This paper summarizes the results from the Siemens combustion system development programs to demonstrate that low emissions and wide engine operating range can be achieved on hydrogen fuel operation in advanced 50 Hz and 60 Hz gas turbines in IGCC applications with carbon dioxide capture.

2021 ◽  
Author(s):  
Thijs Bouten ◽  
Jan Withag ◽  
Lars-Uno Axelsson ◽  
Joris Koomen ◽  
Diethard Jansen ◽  
...  

Abstract Gas turbines with a combustion system for hydrogen operation offer a low carbon solution to support the stability of the energy grid. This provides a solution capturing the needs for energy storage, in the form of hydrogen, and flexible power generation. Fuel flexibility is a key requirement to reduce the operational risks in case hydrogen is not available, whereby hydrogen can be combined with other conventional or alternative fuels. A key issue to achieve 100% hydrogen combustion with low emissions is to prevent flashback. To address the challenges, a project consortium was set-up consisting of gas turbine equipment manufacturers, academia and end-users. The major objective is to develop a cost-effective, ultra-low emissions (sub 9 ppm NOx and CO) combustion system for gas turbines in the 1–300 MW output range, including the 1.85 MWe OPRA OP16 gas turbine. At the center of this innovative high-technology project is the patented and novel aerodynamic trapped vortex FlameSheet™ combustion technology platform. Burner concepts based on an aerodynamically trapped vortex flame stabilization have a higher resistance towards flame blowout than conventional swirl stabilized burners. This paper will present the results of the first phase of the project, whereby atmospheric testing of the upgraded FlameSheet™ combustor has been performed operating on natural gas, hydrogen and mixtures thereof. The optimized combustor configurations demonstrated a wide load range on 100% hydrogen, and these results will be presented.


Author(s):  
William D. York ◽  
Willy S. Ziminsky ◽  
Ertan Yilmaz

Interest in hydrogen as a primary fuel stream in heavy-duty gas turbine engines has increased as precombustion carbon capture and sequestration (CCS) has become a viable option for integrated gasification combined cycle (IGCC) power plants. The U.S. Department of Energy has funded the Advanced IGCC/Hydrogen Gas Turbine Program since 2005 with an aggressive plant-level NOx target of 2 ppm at 15% O2 for an advanced gas turbine cycle. Approaching this NOx level with highly reactive hydrogen fuel at the conditions required is a formidable challenge that requires novel combustion technology. This study begins by measuring entitlement NOx emissions from perfectly premixed combustion of the high-hydrogen fuels of interest. A new premixing fuel injector for high-hydrogen fuels was designed to balance reliable flashback-free operation, reasonable pressure drop, and low emissions. The concept relies on small-scale jet-in-crossflow mixing that is a departure from traditional swirl-based premixing concepts. Single nozzle rig experiments were conducted at pressures of 10 atm and 17 atm, with air preheat temperatures of about 650 K. With nitrogen-diluted hydrogen fuel, characteristic of carbon-free syngas, stable operation without flashback was conducted up to flame temperatures of approximately 1850 K. In addition to the effects of pressure, the impacts of nitrogen dilution levels and amounts of minor constituents in the fuel—carbon monoxide, carbon dioxide, and methane—on flame holding in the premixer are presented. The new fuel injector concept has been incorporated into a full-scale, multinozzle combustor can with an energy conversion rate of more than 10 MW at F-class conditions. The full-can testing was conducted at full gas turbine conditions and various fuel compositions of hydrogen, natural gas, and nitrogen. This combustion system has accumulated over 100 h of fired testing at full load with hydrogen comprising over 90% of the reactants by volume. NOx emissions (ppm) have been measured in the single digits with hydrogen-nitrogen fuel at target gas turbine pressure and temperatures. Results of the testing show that small-scale fuel-air mixing can deliver a reliable, low-NOx solution to hydrogen combustion in advanced gas turbines.


Author(s):  
William D. York ◽  
Willy S. Ziminsky ◽  
Ertan Yilmaz

Interest in hydrogen as a primary fuel stream in heavy-duty gas turbine engines has increased as pre-combustion carbon capture and sequestration (CCS) has become a viable option for integrated gasification combined cycle (IGCC) power plants. The US Department of Energy has funded the Advanced IGCC/Hydrogen Gas Turbine Program since 2005 with an aggressive plant-level NOx target of 2 ppm @ 15% O2 for an advanced gas turbine cycle. Approaching this NOx level with highly-reactive hydrogen fuel at the conditions required is a formidable challenge that requires novel combustion technology. This study begins by measuring entitlement NOx emissions from perfectly-premixed combustion of the high-hydrogen fuels of interest. A new premixing fuel injector for high-hydrogen fuels was designed to balance reliable, flashback-free operation, reasonable pressure drop, and low emissions. The concept relies on distributed, small-scale jet-in-crossflow mixing that is a departure from traditional swirl-based premixing concepts. Single nozzle rig experiments were conducted at pressures of 10 atm and 17 atm, with air preheat temperatures of about 650K. With nitrogen-diluted hydrogen fuel, characteristic of carbon-free syngas, stable operation without flashback was conducted up to flame temperatures of approximately 1850K. In addition to the effects of operating pressure, the impact of minor constituents in the fuel — carbon monoxide, carbon dioxide, and methane — on flame holding in the premixer is presented. The new fuel injector concept has been incorporated into a full-scale, multi-nozzle combustor can with an energy conversion rate of more than 10 MW at F-class conditions. The full-can testing was conducted at full gas turbine conditions and various fuel compositions of hydrogen, natural gas, and nitrogen. This combustion system has accumulated over 100 hours of fired testing at full-load with hydrogen comprising over 90 percent of the reactants by volume. NOx emissions (ppm) have been measured in the single digits with hydrogen-nitrogen fuel at target gas turbine pressure and temperatures. Results of the testing show that small-scale fuel-air mixing can deliver a reliable, low-NOx solution to hydrogen combustion in advanced gas turbines.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


Author(s):  
Markus Feigl ◽  
Geoff Myers ◽  
Stephen R. Thomas ◽  
Raub Smith

This paper describes the concept and benefits of the fuel moisturization system for the GE H System™ steam-cooled industrial gas turbine. The DLN2.5H combustion system and fuel moisturization system are both described, along with the influence of fuel moisture on combustor performance as measured during full-scale, full-pressure rig testing of the DLN2.5H combustion system. The lean, premixed DLN2.5H combustion system was targeted to deliver single-digit NOx and CO emissions from 40% to 100% combined cycle load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. These machines are also designed to yield a potential combined-cycle efficiency of 60 percent or higher. Fuel moisturization contributes to the attainment of both the NOx and the combined-cycle efficiency performance goals, as discussed in this paper.


Author(s):  
Daniel Sequera ◽  
Ajay K. Agrawal

Lean Premixed Combustion (LPM) is a widely used approach to effectively reduce pollutant emissions in advanced gas turbines. Most LPM combustion systems employ the swirling flow with a bluff body at the center to stabilize the flame. The flow recirculation region established downstream of the bluff-body brings combustion products in contact with fresh reactants to sustain the reactions. However, such systems are prone to combustion oscillations and flame flashback, especially if high hydrogen containing fuels are used. Low-Swirl Injector (LSI) is an innovative approach, whereby a freely propagating LPM flame is stabilized in a diverging flow field surrounded by a weakly-swirling flow. The LSI is devoid of the flow recirculation region in the reaction zone. In the present study, emissions measurements are reported for a LSI operated on mixtures of methane (CH4), hydrogen (H2), and carbon monoxide (CO) to simulate H2 synthetic gas produced by coal gasification. For a fixed adiabatic flame temperature and air flow rate, CH4 content of the fuel in atmospheric pressure experiments is varied from 100% to 50% (by volume) with the remainder of the fuel containing equal amounts of CO and H2. For each test case, the CO and nitric oxide (NOx) emissions are measured axially at the combustor center and radially at several axial locations. Results show that the LSI provides stable flame for a range of operating conditions and fuel mixtures. The emissions are relatively insensitive to the fuel composition within the operational range of the present experiments.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


Author(s):  
Ram G. Narula

Natural-gas-fired combined cycle plants have become the preferred technology for new power generation because of their high thermal efficiency and superior environmental characteristics. An outcome of the recent resurgence in the U.S. power market is that the average size of the new power plant has increased, leading to the use of two or three advanced gas turbines (GTs) per plant. In lieu of the traditional multishaft arrangement, some GT suppliers are advocating the use of multiple trains of their single-shaft reference plants. This paper covers salient differences between the two approaches and discusses at length the major variables and their impact on balance-of-plant cost that must be carefully examined for a cost-effective solution.


Author(s):  
H. Jericha ◽  
W. Sanz ◽  
E. Go¨ttlich

Introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore research and development work at Graz University of Technology since the nineties has led to the Graz Cycle, a zero emission power cycle of highest efficiency. It burns fossil fuels with pure oxygen which enables the cost-effective separation of the combustion CO2 by condensation. The efforts for the oxygen supply in an air separation plant are partly compensated by cycle efficiencies far higher than for modern combined cycle plants. Upon the basis of the previous work the authors present the design concept for a large power plant of 400 MW net power output making use of the latest developments in gas turbine technology. The Graz Cycle configuration is changed insofar, as condensation and separation of combustion generated CO2 takes place at the 1 bar range in order to avoid the problems of condensation of water out of a mixture of steam and incondensable gases at very low pressure. A final economic analysis shows promising CO2 mitigation costs in range of 20–30 $/ton CO2 avoided. The authors believe that they present here a partial solution regarding thermal power production for the most urgent problem of saving our climate.


Author(s):  
Harry Miller ◽  
Anders T. Johnson ◽  
Markus Ahrens ◽  
T. Kenton Flanery

A team forms to address the challenge of low cost, low maintenance gas compression that can be quickly ramped up to meet peak demands. The Natural Gas Industry recognizes the importance of efficient, flexible compression equipment for the transmission of gas. In the early 1900s the Gas Industry met its compression objectives with many small reciprocating compressor units. As competition increased, Gas Companies began employing more cost effective larger units 3.7 MW (5,000 bhp) and eventually gas turbines 11+ MW (15,000+ bhp) became the prime mover of choice. While gas fired engine driven compressors are convenient for gas companies; they are becoming increasingly difficult to install. Environmental restrictions have tightened making permitting difficult. The larger gas turbine units seemed a solution because they were the low capital cost prime mover and clean burning. However, gas turbines have not yet achieved the high degree of flexibility and fuel efficiency gas transporters hoped. Flexibility has become an increasingly important issue because of the new “Peaking Power Plants” that are coming online. Gas companies are trying to solve the problem of low cost, low maintenance compression that can be quickly ramped up to meet peak demands. The idea of using electric motors to drive compressors to minimize the environmental, regulatory, and maintenance issues is not new. The idea of installing an electrically powered, highly flexible, efficient, low maintenance compressor unit directly into the pipeline feeding the load, possibly underground where it won’t be seen or heard, is a new and viable way for the gas and electric industries to do business together. This paper examines the application of totally enclosed, variable speed electric motor driven gas compressors to applications requiring completely automated, low maintenance, quick response gas pressure boosters. In this paper we will describe how a natural gas transporter, compressor manufacturer, motor manufacturer, and power company have teamed up to design the world’s first gas compressor that can be installed directly in the pipeline. We will discuss methodologies for installing the proposed compressor, the environmental benefits — no emissions, a small footprint, minimal noise — and the benefit of being able to install compression exactly where it is needed to meet the peaking requirements of today’s new loads.


Sign in / Sign up

Export Citation Format

Share Document