Effect of Wakes and Secondary Flow on Re-Attachment of Turbine Exit Annular Diffuser Flow

Author(s):  
David Kluß ◽  
Alexander Wiedermann ◽  
Horst Stoff

In this paper numerical results of wake and secondary flow interaction in diffuser flow fields are discussed. The wake and secondary flow are generated by a rotating wheel equipped with 30 cylindrical spokes with a diameter of 10 mm as a first approach to the turbine exit flow environment. The apex angle of the diffuser is chosen such that the flow is strongly separated according to the well-known performance charts of Sovran and Klomp [1]. This configuration has been tested in an experimental test rig at the Leibniz University Hannover [2]. According to these experiments, the flow in the diffuser separates as free jet for low rotational speeds of the spoke-wheel as expected by theory. However, if the 30 spokes of the upstream wheel rotate beyond the value of 500 rpm the measurements indicate that the flow remains attached to the outer diffuser wall. It will be shown by the present numerical analysis with the commercial solver ANSYS CFX-10.0 that only an unsteady approach using the elaborate SAS-SST turbulence model is capable of predicting the stabilizing effect of the rotating wheel to the diffuser flow at larger rotational speeds. The favourable comparison with the experimental data suggests that the mixing effect of wakes and secondary flow pattern is responsible for the reattachment. As a result of our studies it can be stated that the considerably higher numerical costs associated with unsteady calculations must be accepted in order to increase the understanding of the physical flow phenomena in turbine exit flow and its interaction with the downstream diffuser.

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
David Kluß ◽  
Horst Stoff ◽  
Alexander Wiedermann

In this paper numerical results of wake and secondary flow interaction in diffuser flow fields are discussed. The wake and secondary flow are generated by a rotating wheel equipped with 30 cylindrical spokes with a diameter of 10 mm as a first approach to the turbine exit flow environment. The apex angle of the diffuser is chosen such that the flow is strongly separated according to the well-known performance charts of Sovran and Klomp (1967, “Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross-Section,” in Fluid Mechanics of Internal Flow, Elsevier, New York, pp. 272–319). This configuration has been tested in an experimental test rig at the Leibniz University Hannover (Sieker and Seume 2007, “Influence of Rotating Wakes on Separation in Turbine Exhaust Diffusers,” Paper No. ISAIF8-54). According to these experiments, the flow in the diffuser separates as free jet for low rotational speeds of the spoke-wheel, as expected by theory. However, if the 30 spokes of the upstream wheel rotate beyond the value of 500 rpm the measurements indicate that the flow remains attached to the outer diffuser wall. It will be shown by the present numerical analysis with the commercial solver ANSYS CFX-10.0 that only an unsteady approach using the elaborate scale adaptive simulation with the shear stress transport turbulence model is capable of predicting the stabilizing effect of the rotating wheel to the diffuser flow at larger rotational speeds. The favorable comparison with the experimental data suggests that the mixing effect of wakes and secondary flow pattern is responsible for the reattachment. As a result of our studies, it can be stated that the considerably higher numerical costs associated with unsteady calculations must be accepted in order to increase the understanding of the physical flow phenomena in turbine exit flow and its interaction with the downstream diffuser.


Author(s):  
Mattia Straccia ◽  
Rodolfo Hofmann ◽  
Volker Gümmer

Abstract This work focuses on presenting new techniques for the visualization of Secondary Flow Phenomena (SFP) in transonic turbomachinery. Here, Rotor 37 has been used to develop and apply these techniques in order to study vortices, shocks and secondary flows. They are also used to provide a comparison between turbulence models in Ansys CFX environment, here the Spalart-Allmaras (SA) and Shear Stress Tensor (SST) turbulence models. The scope of this paper is to give an improved understanding of SFP and how their onset and evolution are influenced from the turbulence model. The analysis is based on results of three-dimensional steady-state RANS simulations, for operating points between design point and near-stall condition, achieved by varying the outlet static pressure radial equilibrium distribution at the rotor exit. The new visualization techniques highlight important flow field features less investigated in previous research works, in particular secondary weak strength vortices. They will give a better visualization of and insight to the interaction of the passage shock and the tip leakage vortex, the interaction between vortices and boundary layers and the interaction of the shock wave and endwall boundary layers.


Author(s):  
Dieter Bohn ◽  
Robert Krewinkel ◽  
Christian Tu¨mmers ◽  
Michael Sell

An important goal in the development of turbine bladings is to improve their efficiency for an optimized usage of energy resources. This requires a detailed insight into the complex 3D-flow phenomena in multi-stage turbines. In order to investigate the flow characteristics of modern highly loaded turbine profiles a test rig with a two stage axial turbine has been set up at the Institute of Steam and Gas Turbines, RWTH Aachen University. The test rig is especially designed to investigate the influence of different cavity sizes. In order to analyze the influence of the cavity size on the secondary flow and to discuss the effects of the blade loading, the 3D flow through the 2-stage turbine with shrouded blades is investigated numerically, using the steady Navier-Stokes inhouse computer code, CHT-Flow. The turbine blading is designed to concentrate the mass flow in the middle of the passage in order to keep the main flow away from the secondary flow regions at the endwalls of the blade. The simulations include a comparison of a configuration without cavities (design case) and two configurations, where the axial gap between the shroud and the endwalls is about 5 mm and the radial gap between the shroud and the endwall is varied between 0.8 mm (open radial gap) and radial gaps “near zero” (closed radial gap). The investigations are done with focus on the secondary flow phenomena in the second guide vane. For a detailed analysis of the blade load the design point and an off-design point are simulated for each blading. The flow conditions are taken from experimental investigations performed at the Institute of Steam and Gas Turbines, Aachen University. In the experimental setup, the turbine is operated at a low pressure ratio of 1.4 with an inlet pressure of 3.2·105 Pa. The numerical results will also be compared to the corresponding experimental data at the outlet of the second stage.


1970 ◽  
Vol 92 (1) ◽  
pp. 65-71 ◽  
Author(s):  
E. Lennemann ◽  
J. H. G. Howard

The phenomena of unsteady relative flow observed in a centrifugal impeller passage running at part capacity and zero flow are discussed. The mechanisms of passage stall for a shrouded and unshrouded impeller are investigated and a qualitative correlation is developed for the influence of secondary flow and inducer flow on the passage stall. The hydrogen bubble flow visualization technique is extended to higher velocities and rotating systems and provides the method for obtaining the experimental results.


Author(s):  
Dieter E. Bohn ◽  
Karsten A. Kusterer

A leading edge cooling configuration is investigated numerically by application of a 3-D conjugate fluid flow and heat transfer solver, CHT-Flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multi-block technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row is on the suction side, the other row is on the pressure side. The cooling holes have a radial ejection angle of 45°. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical domain includes the internal cooling fluid supply, the radially inclined holes and the complete external flow field of the turbine vane in a high resolution grid. Periodic boundary conditions have been used in the radial direction. Thus, end wall effects have been excluded. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three dimensional and asymmetric jet flow field. Within a secondary flow analysis it can be shown that complex vortex systems are formed in the ejection holes and in the cooling fluid jets. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a good agreement concerning the vortex development. The phenomena on the suction side and the pressure side are principally the same. It can be found that the jets are barely touching the blade surface as the dominating vortex transports hot gas under the jets. Thus, the cooling efficiency is reduced.


2021 ◽  
Author(s):  
Masaki Fuchiwaki

Abstract The flow field around moving airfoils capable of flexible elastic deformation has become a focus of attention. These flow fields may be understood as a fluid-structure interaction (FSI) problem, and the motion and deformation of elastic airfoils, as well as the associated vortex flow phenomena in their vicinity, are complicated. Many studies on the flow filed around the elastic moving airfoil have been investigated by experimental and numerical approached. The macro scale vortex structure and the dynamic forces acting on the elastic moving airfoil have been understood. However, the growth process of the vorticity in a vicinity of the wall of an elastic airfoil has not been clarified sufficiently. In this study, the authors focus on the dynamic behaviors of vorticity in the vicinity of the wall on the elastic heaving airfoil and investigate the growth process of the vorticity in a vicinity of the wall of an elastic airfoil by the fluid structure interaction and LES simulations using ANSYS 17.0/ANSYS CFX 17.0. The vorticity in the vicinity of a wall of the elastic airfoil spreads along the wall simultaneously with the increase of the spatial gradient of the wall, and discrete vorticity regions coalesce into a single layer. The time variation in spatial gradient contribute greatly to the growth and development of vorticity.


Author(s):  
Fusheng Meng ◽  
Jie Gao ◽  
Weiliang Fu ◽  
Xuezheng Liu ◽  
Qun Zheng

In a high endwall angle turbine, large meridional expansion can cause the strong secondary flow at the endwall, which results in a larger endwall flow loss than the small meridional expansion turbine. The endwall heat transfer is strongly affected by secondary flow effect. In order to optimize the endwall flow to reduce the flow loss and optimize the distribution of heat load, the swept-curved method was used in this study. The swept-curved method was investigated on a transonic second stator (S2) with large meridional expansion in a Low-Pressure (LP) Turbine. Validation studies were performed to investigate the aerodynamic and the heat transfer prediction ability of shear stress transport (SST) turbulence model. The influence of different shapes of the stacking line, including forward-swept, backward-swept, positive-curved and negative-curved, were investigated through numerical simulation. The parameterized control of swept-curved height and angle were adopted to optimize the performance of the aerodynamic and heat transfer. 3D flow field calculation captured the relatively accurate flow structures in the parts of endwall and near endwall. Heat transfer behaviors were explored by means of isothermal wall temperature and Nusselt number (Nu) distribution. The results show that the maximal heat transfer coefficient at the leading edge, for the formation of horseshoe vortexes that cause the high velocity towards the endwall. The swept vane can improve the static pressure and heat load distribution at the endwall region, which decreases the area-averaged shroud heat flux by 2.6 percent and the loss coefficient 1.3 percent.


2018 ◽  
Vol 851 ◽  
pp. 23-49 ◽  
Author(s):  
Chi Zhu ◽  
Jung-Hee Seo ◽  
Rajat Mittal

In a study motivated by considerations associated with heart murmurs and cardiac auscultation, numerical simulations are used to analyse the haemodynamics in a simple model of an aorta with an aortic stenosis. The aorta is modelled as a curved pipe with a$180^{\circ }$turn, and three different stenoses with area reductions of 50 %, 62.5 % and 75 % are examined. A uniform steady inlet velocity with a Reynolds number of 2000 is used for all of the cases and direct numerical simulation is employed to resolve the dynamics of the flow. The poststenotic flow is dominated by the jet that originates from the stenosis as well as the secondary flow induced by the curvature, and both contribute significantly to the flow turbulence. On the anterior surface of the modelled aorta, the location with maximum pressure fluctuation, which may be considered as the source location for the murmurs, is found to be located around$60^{\circ }$along the aortic arch, and this location is relatively insensitive to the severity of the stenosis. For all three cases, this high-intensity wall pressure fluctuation includes contributions from both the jet and the secondary flow. Spectral analysis shows that for all three stenoses, the Strouhal number of the vortex shedding of the jet shear layer is close to 0.93, which is higher than the shedding frequency of a corresponding free jet or a jet confined in a straight pipe. This frequency also appears in the pressure spectra at the location postulated as the source of the murmurs, in the form of a ‘break frequency.’ The implications of these findings for cardiac auscultation-based diagnosis of aortic stenosis are also discussed.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


Sign in / Sign up

Export Citation Format

Share Document