Influence of the Radial and Axial Gap of the Shroud Cavities on the Flowfield in a 2-Stage Turbine

Author(s):  
Dieter Bohn ◽  
Robert Krewinkel ◽  
Christian Tu¨mmers ◽  
Michael Sell

An important goal in the development of turbine bladings is to improve their efficiency for an optimized usage of energy resources. This requires a detailed insight into the complex 3D-flow phenomena in multi-stage turbines. In order to investigate the flow characteristics of modern highly loaded turbine profiles a test rig with a two stage axial turbine has been set up at the Institute of Steam and Gas Turbines, RWTH Aachen University. The test rig is especially designed to investigate the influence of different cavity sizes. In order to analyze the influence of the cavity size on the secondary flow and to discuss the effects of the blade loading, the 3D flow through the 2-stage turbine with shrouded blades is investigated numerically, using the steady Navier-Stokes inhouse computer code, CHT-Flow. The turbine blading is designed to concentrate the mass flow in the middle of the passage in order to keep the main flow away from the secondary flow regions at the endwalls of the blade. The simulations include a comparison of a configuration without cavities (design case) and two configurations, where the axial gap between the shroud and the endwalls is about 5 mm and the radial gap between the shroud and the endwall is varied between 0.8 mm (open radial gap) and radial gaps “near zero” (closed radial gap). The investigations are done with focus on the secondary flow phenomena in the second guide vane. For a detailed analysis of the blade load the design point and an off-design point are simulated for each blading. The flow conditions are taken from experimental investigations performed at the Institute of Steam and Gas Turbines, Aachen University. In the experimental setup, the turbine is operated at a low pressure ratio of 1.4 with an inlet pressure of 3.2·105 Pa. The numerical results will also be compared to the corresponding experimental data at the outlet of the second stage.

Author(s):  
Dieter E. Bohn ◽  
Jing Ren ◽  
Christian Tu¨mmers ◽  
Michael Sell

An important goal in the development of turbine bladings is improving their efficiency to achieve an optimized usage of energy resources. This requires a detailed insight into the complex 3D-flow phenomena in multi-stage turbines. In order to investigate the flow characteristics of modern highly loaded turbine profiles, a test rig with a two-stage axial turbine has been set up at the Institute of Steam and Gas Turbines, Aachen University. The test rig is especially designed to investigate different blading designs. In order to analyze the influence of the blade design on the unsteady blade row interaction, the 3D flow through the two-stage turbine is simulated numerically, using an unsteady Navier-Stokes computer code. The investigations include a comparison of two bladings with different design criteria. The reference blading is a commonly used cylindrical designed blading. This blade design will be compared with a bow-blading, which is designed to minimize the secondary flow phenomena near the endwall in order to achieve a balanced mass flow through nearly the whole passage height. The investigations will focus on the different loss behavior of the two bladings. Unsteady profile pressure distributions and radial efficiencies of the two blade designs will be discussed in detail. The flow conditions are taken from experimental investigations performed at the Institute of Steam and Gas Turbines. On the basis of the experiments a validation of the code will be performed by comparing the numerical results to the corresponding experimental data at the inlet and the outlet of the blading.


Author(s):  
Tobias W. Zimmermann ◽  
Oliver Curkovic ◽  
Manfred Wirsum ◽  
Andrew Fowler ◽  
Kush Patel

Tangential end wall contouring is intended to improve turbomachinery blading efficiency. This paper is the first of a series of two papers. It summarizes the experimental investigation of a test turbine with end wall contoured vanes and blades. Constant section airfoils as well as optimized 3D high pressure steam turbine blading in baseline and end wall contoured configurations have been examined in a 2 stage axial turbine test rig at the Institute of Power Plant Technology, Steam and Gas Turbines (IKDG) of RWTH Aachen University. The test rig is driven with air. Brush seals are implemented within the casing sided cavities to minimize the leakage flow near the tip end walls, where the contouring is also applied. The pressure and temperature data that is recorded in three axial measuring planes are plotted to visualize the change in flow structure. This has shown that the efficiency is increased for 2D airfoils by means of end wall contouring, which is caused by a homogenized inflow to the second stage. However the efficiency of the first stage suffers, the end wall contouring is beneficial for the performance of the engine. Both phenomena (an efficiency loss in stage one and an improvement of the performance in stage two) have also been measured for the optimized 3D configurations thus it can be expected that end wall contouring has also a beneficial impact on the performance of multi row turbines. The second part of this paper presents the results of numerical investigations of end-wall contoured blades. It will demonstrate how the secondary flow phenomena are influenced by end-wall contours. The simulations are validated with measured data from the test rig.


Author(s):  
Dieter E. Bohn ◽  
Karsten A. Kusterer

A leading edge cooling configuration is investigated numerically by application of a 3-D conjugate fluid flow and heat transfer solver, CHT-Flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multi-block technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row is on the suction side, the other row is on the pressure side. The cooling holes have a radial ejection angle of 45°. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical domain includes the internal cooling fluid supply, the radially inclined holes and the complete external flow field of the turbine vane in a high resolution grid. Periodic boundary conditions have been used in the radial direction. Thus, end wall effects have been excluded. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three dimensional and asymmetric jet flow field. Within a secondary flow analysis it can be shown that complex vortex systems are formed in the ejection holes and in the cooling fluid jets. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a good agreement concerning the vortex development. The phenomena on the suction side and the pressure side are principally the same. It can be found that the jets are barely touching the blade surface as the dominating vortex transports hot gas under the jets. Thus, the cooling efficiency is reduced.


Author(s):  
Xueyou Wen ◽  
Jiguo Zou ◽  
Zheng Fu ◽  
Shikang Yu ◽  
Lingbo Li

Steam-injected gas turbines have a multitude of advantages, but they suffer from the inability to recover precious demineralized water. The present paper describes the test conditions and results of steam injection along with an attempt to achieve water recovery, which were obtained through a series of tests conducted on a S1A-02 small-sized industrial gas turbine. A water recovery device incorporating a compact finned spiral plate cooling condenser equipped with filter screens has been designed for the said gas turbine and a 100% water recovery (based on the design point) was attained.


Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson

This paper presents experiments and CFD calculations of a Low Pressure Turbine/Outlet Guide Vane (LPT/OGV) equipped with an engine mount recess (a bump) tested in the Chalmers linear LPT/OGV cascade. The investigated characteristics include performance for the design point in terms of total pressure loss and turning as well as a detailed description of the downstream development of the secondary flow field. The numerical simulations are performed for the same inlet conditions as in the test-facility with engine-like properties in terms of Reynolds number, boundary-layer thickness and inlet flow angle. The objective is to validate how accurately and reliably the secondary flow field and losses can be predicted for an LPT/OGV equipped with a bump. Three different turbulent models as implemented in FLUENT, the k-ε realizable model, the kω-SST model and the RSM are validated against detailed measurements. From these results it can be concluded that the kω-SST model predicts both the secondary flow field and the losses most accurately.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Stefan Ubben ◽  
Reinhard Niehuis

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. In Part I it was shown that an one-sided diffuser clearance is able to contribute to an increase in flow range, stall margin, pressure ratio, and efficiency. In order to reveal the relevant flow phenomena, in Part II the results of detailed measurements of the pressure distribution at diffuser exit and particle image velocimetry (PIV) measurements inside the diffuser channel performed at three clearance configurations and three diffuser angles at a fixed radial gap are discussed. It was found that, for defined diffuser configurations, the clearance flow amplifies the diffuser throat vortex capable to reduce the loading of the highly loaded vane pressure side and to support a more homogenous diffuser flow. It turned out that the co-action of the geometry parameter diffuser vane angle and diffuser clearance height is of particular importance. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Stefan Ubben ◽  
Reinhard Niehuis

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. Compressor map measurements provide a summary of the operating behavior related to diffuser geometry and impeller speed, whereas detailed flow measurements with temperature and pressure probes allow a breakdown of the losses between impeller and diffuser and contribute to a better understanding of relevant flow phenomena. The results presented in Part I show that an one-sided diffuser clearance does not necessarily has a negative impact on the operation and loss behavior of the centrifugal compressor, but instead may contribute to an increased pressure ratio and improved efficiency as long as the diffuser passage is broad enough with respect to the clearance height. The flow phenomena responsible for this detected performance behavior are exposed in Part II, where the results of detailed measurements with pressure probes at diffuser exit and particle image velocimetry (PIV) measurements conducted inside the diffuser channel are discussed. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”


2003 ◽  
Vol 125 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Kam S. Chana ◽  
Terry V. Jones

Detailed experimental investigations have been performed to measure the heat transfer and static pressure distributions on the rotor tip and rotor casing of a gas turbine stage with a shroudless rotor blade. The turbine stage was a modern high pressure Rolls-Royce aero-engine design with stage pressure ratio of 3.2 and nozzle guide vane (ngv) Reynolds number of 2.54E6. Measurements have been taken with and without inlet temperature distortion to the stage. The measurements were taken in the QinetiQ Isentropic Light Piston Facility and aerodynamic and heat transfer measurements are presented from the rotor tip and casing region. A simple two-dimensional model is presented to estimate the heat transfer rate to the rotor tip and casing region as a function of Reynolds number along the gap.


Author(s):  
Dieter Bonn ◽  
Harald Funke ◽  
Jochen Gier

In the development of modern gas turbines the increase of the turbine inlet temperature is restricted by the need to cool the first stages of the turbine. In addition the flow leaving the combustor is thermally inhomogeneous. Since the blade cooling has to be designed for the actual local hot gas temperatures, it is important to know how these temperature inhomogeneities develop and attenuate inside the multistage flow passage. In this investigation the flow inside a 4-stage turbine, which is set up in a test rig at the Institute of Steam and Gas Turbines, Aachen University of Technology, is calculated with a state-of-the-art fully three-dimensional Navier-Stokes solver based on an accurate finite volume scheme. The stator and rotor rows are coupled via mixing planes. The turbine is a scaled down original turbine with realistic axial gaps. The homogeneous reference case is qualified by comparison to recent experimental data gathered at the test rig. Therefore, the flow is extensively measured at several locations. In a second step a radial temperature streak is set at the inlet for the same point of operation. The results show the development of the temperature streak through the four stages. With this information the underlying mixing processes are described and analysed. It is found that the hot streak segregation effect is present in all four stages.


Author(s):  
Tobias W. Zimmermann ◽  
Manfred Wirsum ◽  
Andrew Fowler ◽  
Kush Patel

Tangential endwall contouring is intended to improve the blading efficiency in turbomachinery. The present paper focusses on the influence of leakage flows on the performance of non-axisymmetric endwall contouring. All tests were conducted on a 2 stage axial turbine test rig at the Institute of Power Plant Technology, Steam and Gas Turbines (IKDG) of RWTH Aachen University. The test rig is driven with air. Two sealing setups are applied to create two different leakage mass flows. Four operating points are investigated that represent the design point as well as over load and part load conditions. The endwall contouring is applied on both hub and casing sides. Three configurations are compared. A baseline design without endwall contouring, contoured stator vanes and non-contoured rotor blades as well as contoured vanes and blades. At first, all configurations are investigated with a negligible leakage flow rate at the casing side. The results show that the vane contoured configuration performs best in stage 1 while the fully contoured set-up loses in efficiency for the design point and in part load compared to baseline. This trend is flipped in stage 2 as the full contoured version performs best and the vane contoured configuration loses significantly. This finding is suggesting that endwall contouring has the potential to increase the efficiency. The second focus is put on the interaction of endwall contouring and leakage flow. These investigations show that neither the vane contoured nor the fully contoured set up show an increased efficiency at any operating point. The trends within the first stage are similar to the measurements with the low amount of leakage flow. In the second stage both contouring designs perform worse than the baseline leading to the assumption that the change in efficiency is mainly caused by the re-entering leakage mass flow upstream the contouring and not by the flow that is sucked into the cavities in front of the rotor contouring.


Sign in / Sign up

Export Citation Format

Share Document