Verification of Low NOx Performance of Simple Primary Rich Combustion Approach by a Newly Established Full Annular Combustor Test Facility

Author(s):  
Mitsumasa Makida ◽  
Hideshi Yamada ◽  
Kazuo Shimodaira ◽  
Seiji Yoshida ◽  
Yoji Kurosawa ◽  
...  

In the TechCLEAN project of JAXA, experimental research has been being conducted to develop a combustor for a small aircraft engine (with pressure ratio of about 20). The combustor was tuned to show the behavior of the Rich-Lean combustion through tests under atmospheric and practical conditions. And in 2006, by a designed multi-sector combustor, NOx emissions were reduced to lower than 42% of the ICAO CAEP4 standard. Based on the tuned combustor, full annular combustors were designed. In parallel, an experimental facility to test the full annular combustors under practical conditions was newly constructed in the spring of 2007. The inlet air conditions were set to the ICAO LTO cycle conditions of the target engine; 0.3–1.8MPa for pressure, 400–700K for temperature and 4–18kg/s for air mass flow rate. Through the full annular combustion experiments under practical conditions, the combustors were tuned to keep good combustion performance which was verified by the multi-sector combustors. The optimized full annular combustor finally achieved the following performance; NOx emissions were reduced to lower than 40% of the ICAO CAEP4 standard, maintaining low CO and THC emissions, good exit temperature profiles (P.T.F. = 0.19 at the take-off condition) and good lean blow-out performance (AFR>200 at the idle condition). The process of the optimization is discussed in this report.

Author(s):  
Mitsumasa Makida ◽  
Hideshi Yamada ◽  
Kazuo Shimodaira

In the TechCLEAN project of JAXA, experimental research has been conducted to develop a combustor for a small aircraft engine. The combustor was tuned to show the behavior of the Rich-Lean combustion through tests under atmospheric and practical conditions. Finally, through full annular combustion experiments under practical conditions, the combustor was tuned to reduce NOx emissions to almost 40% of the ICAO CAEP4 standard, also sustaining low CO and THC emissions. To investigate the performance of the combustor in detail, parametric experiments were conducted with single-sector combustors under additional test conditions in addition to design conditions of the target engine. Also the performance as a combustor for higher-efficient aircraft engine is examined by increasing inlet air pressure and temperature up to 3MPa and 825K in combustion tests. Obtained results of emission characteristics are discussed in this report.


Author(s):  
Mitsumasa Makida ◽  
Hideshi Yamada ◽  
Kazuo Shimodaira ◽  
Takeshi Yamamoto ◽  
Shigeru Hayashi

A series of research experiments under practical conditions has been conducted to develop a combustor for a small-class aircraft engine (with the pressure ratio of about 20). In the previous research experiments, including ignition and emission tests under atmospheric pressure, we applied a single airblast fuel nozzle and utilized the rich-burn quick-quench lean-burn (RQL) combustion approach. The combustor was tuned to show the behavior of the RQL under the atmospheric condition. In this paper, the results of single-sector combustor experiments under the practical temperature and pressure conditions are presented, in which RQL behavior is observed and NOx emissions in the ICAO (International Civil Aviation Organization) LTO (Landing and Take-Off) cycle are reduced to 45% of the ICAO CAEP4 (Committee on Aviation Environmental Protection 4) standard. Also the results of successive multi-sector combustor tests to optimize combustion performances with a more practical combustor configuration under the practical conditions are presented. The emission characteristics which are obtained are compared with those of the single-sector tests, and combustor size and configuration, air mass flow ratio and air hole positions are tuned through a series of multi-sector experiments. After the optimization, the combustor achieved the following performances; NOx emissions are reduced to less than 42% of the ICAO CAEP4 standard, CO and THC (Total Hydrocarbon) are reduced to those of 2% and 50% respectively, the lean blowout limit is kept over 220 AFR (Air to Fuel Ratio) at the idle condition and the exit temperature profile at the full load condition is sufficiently uniform (P.T.F.<0.15). The process of optimization will be discussed in this report.


Author(s):  
Fabian E. Habicht ◽  
Fatma C. Yücel ◽  
Niclas Hanraths ◽  
Neda Djordjevic ◽  
Christian Oliver Paschereit

Abstract Pressure gain combustion is a promising concept to substantially increase the thermal efficiency of gas turbines. One possible implementation that has been frequently investigated are pulse detonation combustors (PDCs), as they permit stable and reliable operation. At the same time, the need for part-load operation and low NOx emissions requires combustion concepts in the lean regime. However, realizing lean combustion is still very challenging in PDCs since the deflagration to detonation transition (DDT) is very sensitive to the reactant composition. The present work investigates an approach to realize lean combustion in PDC by applying fuel stratification experimentally. The scope is to find the necessary increase of fuel concentration inside the pre-detonation chamber to provide reliable DDT with respect to the overall equivalence ratio. Emission measurements in the exhaust of the PDC allow for a quantification of the NOx emissions as a function of the injected fuel profile. A valveless PDC test rig is used, which contains a shock focusing geometry for detonation initiation and is ignited by a spark plug close to the upstream end wall. The subsequent expansion of the burned gas and interaction of the flame front with turbulence leads to the formation of a leading shock inside the pre-detonation chamber, which is then focused inside a converging-diverging geometry. The successful initiation of a detonation wave by shock focusing is very sensitive to the pressure ratio across the leading shock, which can be influenced by initial pressure, reactant composition and flow velocity. Results reveal that fuel stratification allows for reliable detonation initiation at a global equivalence ratio of ϕglob = 0.65, whereas repeatable successful operation with non-stratified fuel injection is limited to ϕglob ≥ 0.85.


Author(s):  
Woo Seok Seol ◽  
Min Soo Yoon ◽  
Dae Sung Lee

Korea Aerospace Research Institute has performed a joint research with the Central Institute of Aviation Motors of Russia on the design, manufacturing, and testing of an annular combustor for a turbo-fan engine with the thrust of 8,000 lbf. In order to reduce smoke generation, a rather large amount of air is introduced to the primary zone. Presented in this paper is a description of the full-scale annular combustor, the test facility, the test procedure, and the test results. The measured parameters include the pressure loss and its dependence on flow velocity, the combustion efficiency by gas analysis, the exit temperature pattern factor for a wide range of air excess ratio, the lean blow-off limit, and the emission characteristics. The main test conditions are the ‘ground idle’ condition and the ‘altitude cruise’ condition. It was confirmed that the exit temperature profile is closely related to the location of dilution holes on the flame tube. Lean blow-off limit is rather narrow since the combustor was designed to provide a large amount of air to the primary zone with an aim of smoke reduction.


Author(s):  
H. Fujiwara ◽  
K. Matsuura ◽  
K. Shimodaira ◽  
S. Hayashi ◽  
M. Kobayashi ◽  
...  

Due to the increasing demands for environment protection, the regulation of NOx emissions from aircraft engines specified by ICAO have become more stringent year by year. A combustor with lean staged fuel injectors is one of the effective methods to reduce NOx emissions. Kawasaki heavy industries Ltd GTBC and Japan Aerospace Exploration Agency (JAXA) have been conducting joint research on a lean staged concentric fuel nozzle for a high pressure ratio aero engine. High pressure combustion tests were performed to clarify the effect of the contour of the air flow passage of the main premix duct, the arrangement of the swilers and the fuel injection position on the NOx emission especially at high power. Visualization of the fuel spray at elevated pressure inside of the premix duct using a model with transparent walls and a laser diagnostics technique showed clear relationship between the distribution of the fuel spray and the NOx emission.


Author(s):  
Holger Streb ◽  
Bernd Prade ◽  
Thomas Hahner ◽  
Stefan Hoffmann

The Vx4.3A gas turbine family has already been well received by the market. Nevertheless the market drives technology towards both increased turbine inlet temperatures and reduced emissions. The HR3 burner was originally developed for the V4.2 and Vx4.3 fleet featuring silo combustors in order to mitigate the risk of flashback and to improve the NOx- emissions (Prade, Streb, 1996). Due to its favourable performance characteristics in the Vx4.3 family the advanced HR3 burner was adapted to the Vx4.3A series with annular combustor. The paper reports upon the design, testing and field evaluation steps which were necessary to implement the burner for the 50 and 60 cycle gas turbines. With CFD calculations the flow field and the mixing of natural gas and combustion air have been optimised. A number of tests in the Siemens test facilities confirmed these predictions. The atmospheric 3 burner segment combustion test rig allows to test flame interaction, stability and exhaust gas emission simultaneously. In the Siemens Berlin Test Facility which provides a platform for full scale gas turbine testing 24 HR3-burners were implemented into a V84.3A gas turbine with a base load power output of 184 MW at ISO conditions for prototype testing before introducing this new burner generation into the bigger 50 cycle family V94.3A. Implementation of 24 scaled HR3 burners were installed in the V94.3A of Cottam Development Centre (Great Britain) and demonstrated an excellent performance. The gas turbine reached an ISO base load output of 265 MW with NOx emissions well below 25 ppmvd. Due to the very promising test results in Berlin and Cottam, this burner modification, which can be retrofitted to all VX4.3A gas turbines, was implemented nearly fleet wide.


Author(s):  
Mitsumasa Makida ◽  
Yoji Kurosawa ◽  
Hideshi Yamada

In the TechCLEAN project of JAXA, experimental research had been conducted to develop a combustor for a small aircraft engine. The combustor was tuned to show the behavior of the Rich-Lean combustion through tests under atmospheric and practical conditions. Finally, through full annular combustion experiments under practical conditions, the combustor was tuned to reduce NOx emissions to almost 40% of the ICAO CAEP4 standard, also sustaining low CO and THC emissions. In the developing process of above combustors, to simplify the combustor system, air blast type fuel nozzles with single fuel injection and dual swirlers were applied. Successively, in this report, the fuel nozzle is modified to dual fuel injection type with triple swirlers, aiming to control combustion performance under varying load conditions. Fuel is injected from inner and outer injection circuits, and the injection ratio between them is treated as one of the parameters. The combination of swirl direction of the three swirlers is selected at first through ignition and blowout tests. Secondly, spray patterns of the selected fuel nozzle are observed with different fuel injection ratios. Thirdly, the nozzle is applied to a rectangular single-sector combustor, and tested under atmospheric pressure with inlet temperature of 500K. NOx, CO, CO2, THC and O2 compositions in the exhaust gas are measured, and correlation among measured emissions data and fuel injection ratio is estimated to examine the influence of the injection ratio on combustion characteristics of the Rich-Lean type aero engine combustor.


Author(s):  
Takeshi Yamamoto ◽  
Kazuo Shimodaira ◽  
Yoji Kurosawa ◽  
Seiji Yoshida

JAXA is conducting research and development on aircraft engine technologies to reduce environmental impact in the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the fourth Committee on Aviation Environmental Protection (CAEP/4) of the International Civil Aviation Organization (ICAO). Lean staged fuel nozzles have been developed and tested using a single-sector combustor under Landing and Take-off (LTO) cycle conditions of the target engine with a rated output of 40 kN and an overall pressure ratio of 25.8. A reduction of 82.2% in LTO NOx emissions relative to the ICAO CAEP/4 standard and drastic reductions in smoke and carbon monoxide (CO) emissions were resulted by single-sector combustor tests of a lean staged combustor with an additional premixed fuel nozzle (ECF: Emission Control Fuel nozzle). After the test, the pilot mixer of the single-sector combustor was improved and an additional 2.5% NOx reduction was achieved by combustion tests. As a next step, a multi-sector combustor with ECF was developed and tested. The test results show that the combustor enables a reduction of 82.2% in LTO NOx emissions relative to the ICAO CAEP/4 standard, though unburnt hydrocarbons (HC) and CO emissions are increased. Temperature distributions in the combustor exit plane were also evaluated.


Author(s):  
M. D. Barringer ◽  
K. A. Thole ◽  
M. D. Polanka

Within a gas turbine engine, the high pressure turbine vanes are subjected to very harsh conditions from the highly turbulent and hot gases exiting the combustor. The temperature and pressure fields exiting the combustor dictate the heat transfer and aero losses that occur in the turbine passages. To better understand these effects, the goal of this work is to develop an adjustable combustor exit profile simulator for the Turbine Research Facility (TRF) at the Air Force Research Laboratory (AFRL). The TRF is a high temperature, high pressure, short duration blow-down test facility that is capable of matching several aerodynamic and thermal non-dimensional engine parameters including Reynolds number, Mach number, pressure ratio, corrected mass flow, gas-to-metal temperature ratio, and corrected speed. The research objective was to design, install, and verify a non-reacting simulator device that provides representative combustor exit total pressure and temperature profiles to the inlet of the TRF turbine test section. This required the upstream section of the facility to be redesigned into multiple concentric annuli that serve the purpose of injecting high momentum dilution jets and low momentum film cooling jets into a central annular chamber, similar to a turbine engine combustor. The design of the simulator allows for variations in injection levels to generate turbulence and pressure profiles. It also can vary the dilution and film cooling temperatures to create a variety of temperature profiles consistent with real combustors. To date, the design and construction of the simulator device has been completed. All of the hardware has been trial fitted and the flow control shutter systems have been successfully installed and tested. Currently, verification testing is being performed to investigate the impact of the generated temperature, pressure, and turbulence profiles on turbine heat transfer and secondary flow development.


Author(s):  
R. J. Lawson

A GE high bypass turbofan aircraft engine combustor has been successfully modeled in an effort to define liner cooling and dilution modifications necessary to create inboard peaked and flat exit temperature profiles. A fully elliptic three–dimensional body–fitted computational fluid dynamics code (CONCERT3D) was used to solve for the flow field variables. The modeling results provided detailed flow information that was used to define cooling and dilution modifications. Boundary condition flow levels for the model were derived from COBRA, a one–dimensional pressure driven flow distribution program. The complex inlet boundary conditions defining the combustor inlet swirl cup discharge flow were generated via a detailed CONCERT2D model. A baseline model was first created and tuned to match existing test results. Using the tuned model, dilution and cooling patterns were varied to analytically achieve the two desired temperature profiles. Approximately ten attempts were needed to match both target profiles. The derived changes were then applied to actual combustor hardware and new exit temperature profiles were measured in full component rig tests. Both tested configurations closely matched the target profiles on the first attempt, greatly reducing the number of hardware modifications and tests typically needed to fulfill profile requirements.


Sign in / Sign up

Export Citation Format

Share Document