Experimental Investigation of Non-Axisymmetrical Flow Control in a Low Speed Axial Compressor

Author(s):  
Huabing Jiang ◽  
Yajun Lu ◽  
Wei Yuan ◽  
Qiushi Li

The non-axisymmetric feature of the compressor separated flow field should be considered when flow control technology is utilized to improve compressor performance. An experiment is performed to investigate the effectiveness of non-axisymmetric flow control using arc curve skewed slot casing treatment in the paper. A simplified non-axisymmetric excitation model is presented with variable circumferential excitation extent and location. FFT analysis results indicate that the frequency spectrum of the non-axisymmetric excitation is similar with that of the whole circumferential excitation. The non-axisymmetric excitation possesses the same dominate frequency, smaller amplitude and wider frequency bandwidth compared to the whole circumferential excitation. A simplified circumferential non-axisymmetric arc curve skewed slot casing treatment is utilized to perform non-axisymmetric excitation on the separated flow field of a low speed single stage axial compressor under both uniform and distorted inlet conditions. Experimental results indicate that the non-axisymmetric slotted casing treatment presents strong flow control capability, which could improve compressor efficiency, total pressure rise coefficient and stall margin. For the distorted inlet condition, the stall margin, total pressure rise and efficiency of the compressor are respectively improved by 47.4%, 12.7% and 0.7% compared to the solid casing, and the compressor efficiency is improved by 1.4% compared to the whole circumferential excitation. For uniform inlet condition, the non-axisymmetric excitation can improve compressor efficiency by 1.0% and 1.5% respectively compared to the solid casing and the whole circumferential excitation. The whole circumferential excitation can also improve the compressor total pressure rise coefficient and stall margin, on the contrary, it decreases compressor efficiency. As a result, the non-axisymmetric slotted casing treatment can achieve more excellent compressor performance than the whole circumferential excitation does. Experimental results also indicate that the circumferential extent and location of the non-axisymmetric excitation can influence the effectiveness of the non-axisymmetric excitation. The best compressor performance can be achieved only when the non-axisymmetric excitation is tuned to match the asymmetric compressor separated flow field. Analysis on the experimental results indicates that compressor efficiency improvement achieved with the non-axisymmetric excitation can not simply attribute to the flow loss reduction induced by fewer casing slots. The flow loss reduction within undistorted sector, the circumferential flow exchange and the dynamic response induced by the non-axisymmetric excitation, the unsteady coupling between the non-axisymmetric excitation and the separated flow field might be the key flow factors to influence the compressor flow field structure, and hence influence the compressor performance.

Author(s):  
C. S. Kang ◽  
A. B. McKenzie ◽  
R. L. Elder

An experimental investigation to examine the influence of the vaned recess casing treatment on stall margin, operating efficiency and the flow field of a low speed axial flow fan with aerospace type blade loading is presented. Different geometrical designs of the vaned passages were examined. The best configuration resulted in a stall margin improvement of 67%, a significantly higher pressure rise in the stall region and insignificant change in peak efficiency. Detailed 3-D flow measurements in the endwall region and in the casing recess were carried out with a slanted hot-wire, providing some insight to the operation of the device. The results revealed that the stall margin improvement was largely due to the removal of flow from the blade tip to the recess, and the elimination of the growth of the stall region at the tip, which occurs at stall in the solid casing build.


1979 ◽  
Vol 101 (2) ◽  
pp. 237-243 ◽  
Author(s):  
E. M. Greitzer ◽  
J. P. Nikkanen ◽  
D. E. Haddad ◽  
R. S. Mazzawy ◽  
H. D. Joslyn

An experimental investigation has been carried out on the influence of grooved casing treatment on the stall margin of a compressor rotor. Tests were conducted with two rotor builds having different solidities (but all other parameters identical) so that one of the rotors exhibited a wall, or casing, type of stall, while the other showed a blade stall. It was found that the casing treatment, when compared to the solid casing, was very effective in increasing the stall margin of the wall stall configuration, whereas there was little or no change in the stall point of the blade stall configuration. Detailed relative frame measurements of the rotor exit flow field were also taken as part of the program. These showed that in a wall stall situation, the use of casing treatment produced a substantial decrease in the relative total pressure defect, compared with the solid casing, while this was not true for the blade stall type of blading. The results of the experiments, both in overall measurements and in the detailed relative frame traverses, support the hypothesis that casing treatment is effective only in a situation in which a wall stall exists.


Author(s):  
Hao G Zhang ◽  
Fei Y Dong ◽  
Wei Wang ◽  
Wu L Chu ◽  
Song Yan

This investigation aims to understand the mechanisms of affecting the axial flow compressor performance and internal flow field with the application of self-recirculation casing treatment. Besides, the potentiality of further enhancing the compressor performance and stability by optimizing the geometric structure of self-recirculation casing treatment is discussed in detail. The results show that self-recirculation casing treatment generates about 7.06, 7.89% stall margin improvements in the experiment and full-annulus unsteady calculation, respectively. Moreover, the compressor total pressure and isentropic efficiency are improved among most of operating points, and the experimental and calculated compressor peak efficiencies are increased by 0.7% and 0.6%, respectively. The comparisons between baseline shroud and self-recirculation casing treatment show that the flow conditions of the compressor rotor inlet upstream are improved well with self-recirculation casing treatment, and the degree of the pressure enhancement in the blade top passage for self-recirculation casing treatment is higher than that for baseline. Further, self-recirculation casing treatment can restrain the leading edge-spilled flows made by the blade tip clearance leakage flows and weaken the blade tip passage blockage. Hence, the flow loss near the rotor top passage is reduced after the application of self-recirculation casing treatment. The rotor performance and stability for self-recirculation casing treatment are greater than those for baseline. The flow-field analyses also indicate that the adverse effects caused by the clearance leakage flows of the blades tip rear are greater than those made by the clearance leakage flows of the blades leading edge. When one injecting part of self-recirculation casing treatment is aligned with the inlet of one blade tip passage, the flow-field quality in the passage is not the best among all the passages between two adjacent injecting parts of self-recirculation casing treatment. Further, the flow-field analyses also indicate that the effect of the relative position between the blade and self-recirculation casing treatment on the flows in the self-recirculation casing treatment may be ignored during the optimization of the recirculating loop configuration.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Xu Dong ◽  
Dakun Sun ◽  
Fanyu Li ◽  
Donghai Jin ◽  
Xingmin Gui ◽  
...  

Swirl inlet distortion is usually encountered in modern flight vehicles since their inlet ducts usually consist of one or two bends, such as S-inlet duct. An experimental device is first designed to simulate the swirl inlet distortion and then used to test the effectiveness of a novel casing treatment (CT) on a low-speed compressor under the swirl distortions of various intensities. The influences of co- and counter-rotating swirl inlet distortion on the test compressor and the stabilization ability of this novel CT are well demonstrated by the illustrations of static pressure rise curves and efficiency curves. The dynamic prestall pressure signals are also captured to reflect the perturbation energy in the flow field through which the mechanism of the novel CT will be indicated. The relevant results show that counter-rotating swirl distortion in small intensity could increase the compressive ability of compressor with small efficiency loss, and the co-rotating swirl distortion always brings about detrimental effects on compressor performance. At the same time, the distortion of twin swirls can cause nonuniform total pressure profile which can seriously damage the compressor performance. Besides, the stall precursor-suppressed (SPS) CT shows a good capability of stall margin (SM) enhancement no matter what swirl inlet distortions are encountered in the test compressor.


Author(s):  
D. Schönweitz ◽  
M. Voges ◽  
G. Goinis ◽  
G. Enders ◽  
E. Johann

The flow in the blade tip vicinity of the transonic first stage of a multi-stage axial flow compressor with variable inlet guide vane (IGV) and casing treatment (CT) above the rotor is investigated experimentally and numerically with focus on the effects of the CT on flow structures and compressor performance. For the experimental part of this study, conventional performance instrumentation is used to estimate the operating condition of the compressor. Radial distributions of total temperature and total pressure are taken at the leading edges of the stators for comparison with simulations as well as for adjusting the operating conditions of the compressor. The velocity field in the rear part of the first-rotor is determined with Particle Image Velocimetry (PIV) at 90% and 96% radial height using two periscope light sheet probes. The employed PIV setup allows a spatial resolution of 0.7 mm × 0.7mm and thus a similar resolution as the spatial discretization in the simulation. For the numerical part of the study, time-accurate simulations are conducted for the same operating conditions as during experiments. Additional simulations of the same configuration with smooth casing are conducted in order to estimate the effect of the CT on the flow. The examination of PIV measurements and corresponding simulations exposes complex vortical structures originating from the interaction of the rotor bow shock with the IGV trailing edge, CT, IGV wake and the tip leakage vortex. The associated induced velocities together with the general passage flow form a complex flow field with significantly altered blockage compared to a common flow field in the tip vicinity. Position and trajectory of the tip leakage vortex are deduced from interactions between tip leakage vortex and IGV wake / CT. The detailed comparison of the tip region of simulations with and without CT shows that the CT influences pressure rise and flow parameters in a wide radial range due to a radial redistribution of the flow. Correspondingly, a rotor with CT can achieve an increased total pressure rise compared to a rotor with smooth casing, with only minor effects on the efficiency.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

The present numerical work studies the flow field in subsonic axial compressor stator passages for: (a) preceding rotor sweep (b) preceding rotor re-staggering (three stagger angle changes: 0°, +3° and +5°); and (c) stator sweeping (two 20° forward sweep schemes). The following are the motives for the study: at the off-design conditions, compressor rotors are re-staggered to alleviate the stage mismatching by adjusting the rows to the operating flow incidence. Fundamental to this is the understanding of the effects of rotor re-staggering on the downstream component. Secondly, sweeping the rotor stages alters the axial distance between the successive rotor-stator stages and necessitates that the stator vanes must also be swept. To the best of the author’s knowledge, stator sweeping to suit such scenarios has not been reported. The computational model for the study utilizes well resolved hexahedral grids. A commercial CFD package ANSYS® CFX 11.0 was used with standard k-ω turbulence model for the simulations. CFD results were well validated with experiments. The following observations were made: (1) When the rotor passage is closed by re-staggering, with the same mass flow rate and the same stator passage area, stators were subjected to negative incidences. (2) Effect of stator sweeping on the upstream rotor flow field is insignificant. Comparison of total pressure rise carried by the downstream stators suggests that an appropriate redesign of stator is essential to match with the swept rotors. (3) While sweeping the stator is not recommended, axial sweeping is preferable over true sweeping when it is necessary.


Author(s):  
Manjunath L Nilugal ◽  
K Vasudeva Karanth ◽  
Madhwesh N

This article presents the effect of volute chamfering on the performance of a forward swept centrifugal fan. The numerical analysis is performed to obtain the performance parameters such as static pressure rise coefficient and total pressure coefficient for various flow coefficients. The chamfer ratio for the volute is optimized parametrically by providing a chamfer on either side of the volute. The influence of the chamfer ratio on the three dimensional flow domain was investigated numerically. The simulation is carried out using Re-Normalisation Group (RNG) k-[Formula: see text] turbulence model. The transient simulation of the fan system is done using standard sliding mesh method available in Fluent. It is found from the analysis that, configuration with chamfer ratio of 4.4 is found be the optimum configuration in terms of better performance characteristics. On an average, this optimum configuration provides improvement of about 6.3% in static pressure rise coefficient when compared to the base model. This optimized chamfer configuration also gives a higher total pressure coefficient of about 3% validating the augmentation in static pressure rise coefficient with respect to the base model. Hence, this numerical study establishes the effectiveness of optimally providing volute chamfer on the overall performance improvement of forward bladed centrifugal fan.


Author(s):  
N. K. W. Lee ◽  
E. M. Greitzer

An experimental investigation was carried out to examine the effects on stall margin of flow injection into, and flow removal out of, the endwall region of an axial compressor blade row. A primary objective of the investigation was clarification of the mechanism by which casing treatment (which involves both removal and injection) suppresses stall in turbomachines. To simulate the relative motion between blade and treatment, the injection and removal took place through a slotted hub rotating beneath a cantilevered stator row. Overall performance data and detailed (time-averaged) flowfield measurements were obtained. Flow injection and removal both increased the stalling pressure rise, but neither was as effective as the wall treatment. Removal of high blockage flow is thus not the sole reason for the observed stall margin improvement in casing or hub treatment, as injection can also contribute significantly to stall suppression. The results also indicate that the increase in stall pressure rise with injection is linked to the streamwise momentum of the injected flow, and it is suggested that this should be the focus of further studies.


Author(s):  
HaoGuang Zhang ◽  
Kang An ◽  
Feng Tan ◽  
YanHui Wu ◽  
WuLi Chu

The compressor aerodynamic design is conducted under the condition of clean inlet in general, but a compressor often operates under the condition of inlet distortion in the practical application. It has been proven by a lot of experimental and numerical investigations that inlet distortion can decrease the performance and stability of compressors. The circumferential or radial distorted inlet in mostly numerical investigations is made by changing the total pressure and total temperature in the inlet ring surface of the compressors. In most of inlet distortion experiments, distorted inlets are usually created by using wire net, flashboards, barriers or the generator of rotating distortion. The fashion of generating distorted inlet for experiment is different from that for numerical simulation. Consequently, the flow mechanism of affecting the flow field and stability of a compressor with distorted inlet for experiment is partly different than that for numerical simulation. In the numerical work reported here, the inlet distortion is generated by setting some barriers in the inlet ring surface of an axial subsonic compressor rotor. Two kinds of distorted inlet are investigated to exploring the effect of distorted range on the flow field and stability of the compressor with ten-passage unsteady numerical method. The numerical results show that the inlet distortions not only degrade the total pressure and efficiency of the compressor rotor, but also decrease the stability of the rotor. The larger the range of distorted inlet is, the stronger the adverse effect is. The comprehensive stall margin for the inlet distortion of 24 degrees and 48 degrees of ten-passages is reduced about 3.35% and 5.88% respectively. The detailed analysis of the flow field in the compressor indicates that the blockage resulted from tip clearance leakage vortex (TLV) and the flow separation near the suction surfaces of some blades tip for distorted inlet is more serious than that resulted from TLV for clean inlet. Moreover, the larger the range of distorted inlet is, the larger the range of the blockage is. The analysis of unsteady flow shows that during this process, which is that one rotor blade passes through the region affected by the distorted inlet, the range of the blockage in the rotor passage increases first, then reduces, and increases last.


Author(s):  
Yan Ma ◽  
Guang Xi ◽  
Guangkuan Wu

The present paper describes an investigation of stall margin enhancement and a detailed analysis of the impeller flow field due to self-recirculation casing treatment (SRCT) configuration of a high-speed small-size centrifugal impeller. The influence of different SRCT configurations on the impeller flow field at near-stall condition has been analyzed, highlighting the improvement in stall flow ability. This paper also discusses the influence of the SRCT configurations on the inlet flow angle, inlet swirl velocity and loss distribution in the impeller passage to understand the mechanism of the SRCT configurations in enhancing the stall margin of the impeller. The variation of the bleed flow rate at different operating conditions is also presented in this paper. Finally, the time-averaged unsteady simulation results at near-stall point are presented and compared with steady-state solutions.


Sign in / Sign up

Export Citation Format

Share Document