Experimental and Numerical Examinations of a Transonic Compressor-Stage With Casing Treatment

Author(s):  
D. Schönweitz ◽  
M. Voges ◽  
G. Goinis ◽  
G. Enders ◽  
E. Johann

The flow in the blade tip vicinity of the transonic first stage of a multi-stage axial flow compressor with variable inlet guide vane (IGV) and casing treatment (CT) above the rotor is investigated experimentally and numerically with focus on the effects of the CT on flow structures and compressor performance. For the experimental part of this study, conventional performance instrumentation is used to estimate the operating condition of the compressor. Radial distributions of total temperature and total pressure are taken at the leading edges of the stators for comparison with simulations as well as for adjusting the operating conditions of the compressor. The velocity field in the rear part of the first-rotor is determined with Particle Image Velocimetry (PIV) at 90% and 96% radial height using two periscope light sheet probes. The employed PIV setup allows a spatial resolution of 0.7 mm × 0.7mm and thus a similar resolution as the spatial discretization in the simulation. For the numerical part of the study, time-accurate simulations are conducted for the same operating conditions as during experiments. Additional simulations of the same configuration with smooth casing are conducted in order to estimate the effect of the CT on the flow. The examination of PIV measurements and corresponding simulations exposes complex vortical structures originating from the interaction of the rotor bow shock with the IGV trailing edge, CT, IGV wake and the tip leakage vortex. The associated induced velocities together with the general passage flow form a complex flow field with significantly altered blockage compared to a common flow field in the tip vicinity. Position and trajectory of the tip leakage vortex are deduced from interactions between tip leakage vortex and IGV wake / CT. The detailed comparison of the tip region of simulations with and without CT shows that the CT influences pressure rise and flow parameters in a wide radial range due to a radial redistribution of the flow. Correspondingly, a rotor with CT can achieve an increased total pressure rise compared to a rotor with smooth casing, with only minor effects on the efficiency.

Author(s):  
Martin W. Mu¨ller ◽  
Christoph Biela ◽  
Heinz-Peter Schiffer ◽  
Chunill Hah

The influence of circumferential grooves on the tip flow field of an axial single-stage transonic compressor rotor has been examined experimentally and numerically. The compressor stage provides a strongly increased stall margin with only small penalties in efficiency when the casing treatment is applied. Due to the complex interactions of the grooves with the rotor flow, unsteady measurement techniques have been chosen as an attempt to identify the aerodynamic effects responsible for the operating range extension. Therefore, the casing treatment has been instrumented with piezoresistive pressure sensors in the land between the grooves providing high-resolution static wall pressure measurements at different operating conditions. Data acquisition worked at a sampling rate of 125kHz, providing around 23 static pressure values per blade passage at 11 axial positions at the nominal speed of 20,000 rpm. A comparable dataset, but with 14 sensors, was obtained for the smooth casing. The results show the fluctuation of the tip leakage vortex and shock-vortex-interactions as well as the changed situation with casing treatment. Ensemble-averaged data shows tip leakage vortex trajectories. At near stall conditions with the smooth casing, the vortex hits the front part of the adjacent blade, which indicates the possibility of a spill forward of low momentum fluid into the next passage. Standard deviation values prove a high fluctuation of the pressure field over the tip gap. When the casing treatment is applied, the vortex trajectory maintains alignment along the blade’s suction side, thus preventing the onset of rotating stall. Results are presented as a back-to-back comparison of the smooth casing versus the treated casing at three operating conditions: peak efficiency at a mass flow rate of m˙pe = 16.2kg/s, near stall of the smooth casing at m˙nssc = 14.0kg/s and near stall of the treated casing at m˙ns = 12.6kg/s. Steady and unsteady numerical simulations of the rotor-only flow field have been calculated with and without grooves. These calculations aim at a broad analysis of the occurring flow phenomena at the rotor tip. Tip leakage flow behaviour and vortex trajectories are discussed in detail by summarizing the congruent findings of both numerical and experimental investigations.


1998 ◽  
Author(s):  
O. Puetz ◽  
J. Eikelmann ◽  
H. Stoff

Detailed experiments have been made in a 4-stage axial compressor of industrial design. The exit flow field of the rotor of the first stage was measured by hot-wire anemometry and fast-response pressure probes under design operating conditions. Tandem inlet guide vanes (IGV) are situated upstream of the first rotor. Flow field results are presented for total pressure, massflux and swirl angle over a closely-spaced grid of probe locations in radial and circumferential directions in the absolute and rotating frame of reference. The tandem inlet guide vane row and stage 1 vane row are positioned peripherally for various settings (clocking). Depending on the peripherical position of IGV and stator 1 the mean values for one rotor pitch varies by 1.5% for mass flow, 1.3° for swirl angle and 8.7% for total pressure. Loss in total pressure at the rotor exit is a minimum, when the IGV row wakes enter the downstream rotor passage at about 1/4 pitch from the suction-side. Blade and vane channels have similar pitchwise spacing.


1997 ◽  
Vol 119 (1) ◽  
pp. 122-128 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver

An experimental investigation concerning tip flow field unsteadiness was performed for a high-performance, state-of-the-art transonic compressor rotor. Casing-mounted high frequency response pressure transducers were used to indicate both the ensemble averaged and time varying flow structure present in the tip region of the rotor at four different operating points at design speed. The ensemble averaged information revealed the shock structure as it evolved from a dual shock system at open throttle to an attached shock at peak efficiency to a detached orientation at near stall. Steady three-dimensional Navier Stokes analysis reveals the dominant flow structures in the tip region in support of the ensemble averaged measurements. A tip leakage vortex is evident at all operating points as regions of low static pressure and appears in the same location as the vortex found in the numerical solution. An unsteadiness parameter was calculated to quantify the unsteadiness in the tip cascade plane. In general, regions of peak unsteadiness appear near shocks and in the area interpreted as the shock-tip leakage vortex interaction. Local peaks of unsteadiness appear in mid-passage downstream of the shock-vortex interaction. Flow field features not evident in the ensemble averaged data are examined via a Navier-Stokes solution obtained at the near stall operating point.


Author(s):  
Xi Nan ◽  
Feng Lin ◽  
Takehiro Himeno ◽  
Toshinori Watanabe

Casing boundary layer effectively places a limit on the pressure rise capability achievable by the compressor. The separation of the casing boundary layer not only produce flow loss but also closely related to the compressor rotating stall. The motivation of this paper is to present a viewpoint that the casing boundary layer should be paid attention to in parallel with other flow factors on rotating stall trigger. This paper illustrates the casing boundary layer behavior by displaying its separation phenomena with the presence of tip leakage vortex at different flow conditions. Skin friction lines and the corresponding absolute streamlines are used to demonstrate the three-dimensional flow patterns on and near the casing. The results depict a Saddle, a Node and several tufts of skin friction lines dividing the passage into four zones. The tip leakage vortex is enfolded within one of the zones by the separated flows. All the flows in each blade passage are confined within the passage as long as the compressor is stable. The casing boundary layer of a transonic compressor is also examined in the same way, which results in qualitatively similar zonal flows that enfolds the tip leakage vortex. This research develops a new way to study the casing boundary layer in rotating compressors. The results may provide a first-principle based explanation to stalling mechanisms for compressors that are casing sensitive.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
William Riéra ◽  
Lionel Castillon ◽  
Julien Marty ◽  
Francis Leboeuf

In the present study, the influence of the inlet condition on the tip clearance flow of an axial compressor is investigated. Two different zonal detached eddy simulations (ZDES) computations are carried out and compared to Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) computations as well as to experimental data. A rotating distortion map of the flow cartography is set as inlet condition for the first ZDES computation. An azimuthally averaged inlet condition is used for the second one and uncouples the rotor tip-leakage vortex flutter phenomenon, which stems from the arrival of the inlet guide vane wake from the behavior inherent to the rotor tip-leakage vortex. In the studied configuration, the inlet guide vane tip vortex reveals to lower the effects from double leakage on the rotor. The topology of the rotor tip-leakage vortex is described, and its development is analyzed.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1372
Author(s):  
Mingming Zhang ◽  
Anping Hou

In order to explore the inducing factors and mechanism of the non-synchronous vibration, the flow field structure and its formation mechanism in the non-synchronous vibration state of a high speed turbocompressor are discussed in this paper, based on the fluid–structure interaction method. The predicted frequencies fBV (4.4EO), fAR (9.6EO) in the field have a good correspondence with the experimental data, which verify the reliability and accuracy of the numerical method. The results indicate that, under a deviation in the adjustment of inlet guide vane (IGV), the disturbances of pressure in the tip diffuse upstream and downstream, and maintain the corresponding relationship with the non-synchronous vibration frequency of the blade. An instability flow that developed at the tip region of 90% span emerged due to interactions among the incoming main flow, the axial separation backflow, and the tip leakage vortices. The separation vortices in the blade passage mixed up with the tip leakage flow reverse at the trailing edge of blade tip, presenting a spiral vortex structure which flows upstream to the leading edge of the adjacent blade. The disturbances of the spiral vortexes emerge to rotate at 54.5% of the rotor speed in the same rotating direction as a modal oscillation. The blade vibration in the turbocompressor is found to be related to the unsteadiness of the tip flow. The large pressure oscillation caused by the movement of the spiral vortex is regarded as the one of the main drivers for the non-synchronous vibration for the present turbocompressor, besides the deviation in the adjustment of IGV.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


Author(s):  
Shaowen Chen ◽  
Zhihua Zhou ◽  
Qinghe Meng ◽  
Songtao Wang ◽  
Xun Zhou

The effects of a novel winglet-cavity tip on the flow field and aerodynamic performance of a turbine blade with tip clearance have been investigated in a low-speed wind tunnel. A calibrated five-hole probe is used for the measurement of three-dimensional flows downstream of the cascade. The method of oil-flow visualization is used to show the endwall flow field structure. The distribution of endwall static pressure is measured particularly by using the special moveable endwall. The downstream results show that, compared with the flat tip and cavity tip, the winglet-cavity tip reduces aerodynamic loss in the region of tip leakage vortex and passage vortex effectively and gives a 8.5% reduction of total pressure losses at a tip clearance of τ/ H = 1.0%. Meanwhile, a more uniform flow angle is obtained with the winglet-cavity tip. Thus, the winglet-cavity tip provides better aerodynamic performance. It was found that more endwall flow enters the cavity from the front of suction side gap, combines with the flow entering the tip from the pressure side, and then separates upon the cavity. This reduces the loss of passage vortex. The endwall static pressure indicates that the winglet-cavity tip reduces the driving pressure difference and weakens the tip leakage flow. With the tip clearance increasing, the leakage flow is significantly enhanced. This strengthens the interaction between the tip leakage vortex and the passage vortex. With respect to the flat tip and cavity tip, the winglet-cavity tip obtains the lowest total pressure loss at all tested tip clearances.


Author(s):  
Mingcong Luo ◽  
Qun Zheng ◽  
Lanxin Sun ◽  
Qingfeng Deng ◽  
Jiyou Chen ◽  
...  

The rotor blade tip leakage flow and associated formation of the tip leakage vortex and interaction of the tip leakage vortex with the shockwave, particularly in the case of a transonic compressor rotor have significant impact on the compressor performance and its stability. Air injection upstream of the compressor rotor tip has been shown to improve compressor performance and enhance its stability. The air required for rotor blade tip injection is generally taken from the later stages of the compressor thus causing penalty on the gas turbine performance. In this study, effects of water injection at the rotor tip with and without the wet compression on the compressor performance and its stability have been examined. To achieve the stated objectives, the well tested transonic compressor rotor stage, NASA rotor stage 37, has been numerically simulated. The evaluation of results on various performance parameters such as total pressure ratio, inlet flow capacity and adiabatic efficiency combined with contours of total pressure losses, entropy, Mach No., and temperature including limiting streamlines, shows that the blade tip water injection could help in reducing low energy region downstream of the shockwave and strength of the tip leakage vortex with the compressor operating at its rotating stall boundary condition. The extent of reduction depends on the droplet size, injection flow rate and its velocity. Furthermore, results show that combined case of the blade tip water injection and the wet compression could provide better stall margin enhancement than the blade tip water injection case.


Author(s):  
Huabing Jiang ◽  
Yajun Lu ◽  
Wei Yuan ◽  
Qiushi Li

The non-axisymmetric feature of the compressor separated flow field should be considered when flow control technology is utilized to improve compressor performance. An experiment is performed to investigate the effectiveness of non-axisymmetric flow control using arc curve skewed slot casing treatment in the paper. A simplified non-axisymmetric excitation model is presented with variable circumferential excitation extent and location. FFT analysis results indicate that the frequency spectrum of the non-axisymmetric excitation is similar with that of the whole circumferential excitation. The non-axisymmetric excitation possesses the same dominate frequency, smaller amplitude and wider frequency bandwidth compared to the whole circumferential excitation. A simplified circumferential non-axisymmetric arc curve skewed slot casing treatment is utilized to perform non-axisymmetric excitation on the separated flow field of a low speed single stage axial compressor under both uniform and distorted inlet conditions. Experimental results indicate that the non-axisymmetric slotted casing treatment presents strong flow control capability, which could improve compressor efficiency, total pressure rise coefficient and stall margin. For the distorted inlet condition, the stall margin, total pressure rise and efficiency of the compressor are respectively improved by 47.4%, 12.7% and 0.7% compared to the solid casing, and the compressor efficiency is improved by 1.4% compared to the whole circumferential excitation. For uniform inlet condition, the non-axisymmetric excitation can improve compressor efficiency by 1.0% and 1.5% respectively compared to the solid casing and the whole circumferential excitation. The whole circumferential excitation can also improve the compressor total pressure rise coefficient and stall margin, on the contrary, it decreases compressor efficiency. As a result, the non-axisymmetric slotted casing treatment can achieve more excellent compressor performance than the whole circumferential excitation does. Experimental results also indicate that the circumferential extent and location of the non-axisymmetric excitation can influence the effectiveness of the non-axisymmetric excitation. The best compressor performance can be achieved only when the non-axisymmetric excitation is tuned to match the asymmetric compressor separated flow field. Analysis on the experimental results indicates that compressor efficiency improvement achieved with the non-axisymmetric excitation can not simply attribute to the flow loss reduction induced by fewer casing slots. The flow loss reduction within undistorted sector, the circumferential flow exchange and the dynamic response induced by the non-axisymmetric excitation, the unsteady coupling between the non-axisymmetric excitation and the separated flow field might be the key flow factors to influence the compressor flow field structure, and hence influence the compressor performance.


Sign in / Sign up

Export Citation Format

Share Document