Numerical Computation of the Pulsatile Flow in a Turbocharger With Realistic Inflow Conditions From an Exhaust Manifold

Author(s):  
Fredrik Hellstrom ◽  
Laszlo Fuchs

The combined effect of different secondary perturbations at the turbine inlet and the pulsatile flow on the turbine performance was assessed and quantified by using Large Eddy Simulation. The geometrical configuration consists of a 4-1 exhaust manifold and a radial turbine. At the inlet to each port of the manifold, engine realistic pulsatile mass flow and temperature fields are specified. The turbine used in this numerical study is a vaneless radial turbine with 9 blades, with a size that is typical for a turbocharger mounted on a 2.0 liters IC engine of passenger cars. The flow field is investigated and the generated vortices are visualized to enable a better insight into the unsteady flow field. Correlations between the turbine inflow conditions, such as mass flow rate, strength of secondary flow components, and the turbine performance have also been studied. The results show that the flow field entering the turbine is heavily disturbed with strong secondary flow components and disturbed axial velocity profile. Between the inlet to the turbine and the wheel, the strength of the secondary flow and the level of the disturbances of the axial flow decrease which gives large losses in this region. Even though the magnitude of the disturbances decrease, the flow entering the wheel will still be disturbed, resulting in a perturb inlet flow to the wheel which affects the shaft power output from the turbine.

Author(s):  
Fredrik Hellstrom ◽  
Laszlo Fuchs

For a turbocharger working under internal combustion engine operating conditions, the flow will be highly pulsatile and the efficiency of the radial turbine will vary during the engine cycle. In addition to effects of the inflow unsteadiness, there is also always a substantial unsteady secondary flow component at the inlet to the turbine depending on the geometry upstream. These secondary motions may consist of swirl, Dean vortices and other cross-sectional velocity components formed in the exhaust manifold. The strength and the direction of the vortices vary in time depending on the unsteady flow in the engine exhaust manifold, the engine speed and the geometry of the manifold itself. The turbulence intensity may also vary during the engine cycle leading to a partially developed turbulent flow field. The effect of the different perturbations on the performance of a radial nozzle-less turbine is assessed and quantified by using Large Eddy Simulations. The turbine wheel is handled using a sliding mesh technique, whereby the turbine wheel, with its grid is rotating, while the turbine house and its grid are kept stationary. The turbine performance has been compared for several inflow conditions. The results show that an inflow-condition without any perturbations gives the highest shaft power output, while a turbulent flow with a strongly swirling motion at the inlet results in the lowest power output. An unexpected result is that a turbulent inflow yields a lower shaft power than a turbulent inflow with a secondary flow formed by a pair of Dean vortices. The flow field for the different cases is investigated to give a better insight into the unsteady flow field and the effects from the different inlet conditions.


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
M. A. S. Izaiddin ◽  
A. F. Mustaffa ◽  
M. H. Padzillah

A mixed flow turbine is a type of turbine that is used mostly in turbocharger engine for vehicle. The ability of this turbine in obtain maximum efficiency on a wider operating range makes it more favorable compared to axial turbine and radial turbine. In this project, one of the factors affecting turbine performance which is torque has been studied using simulation. The simulation is then being run by varying the mass flow supply to the turbine. In this simulation, torque generation has been identified and plot on the entire blade surface. This torque generation capability is then been compared between 0.25 kg/s, 0.45 kg/s and 0.65 kg/s mass flow. From the simulation, the torque generated is founded to fluctuate along the turbine blade surface. Besides, the torque generated at the leading edge and trailing edge surface are negative. The magnitude of torque generated increases, as the mass flow increased. At the mid span of the blade, torque generated at 0.25 kg/s, 0.45 kg/s and 0.65 kg/s is -3.73 X 10-3Nm, 4.33 X 10-3Nm, and 11.8 X 10-3Nm respectively.


2021 ◽  
Author(s):  
Anand P. Darji ◽  
Beena D. Baloni ◽  
Chetan S. Mistry

Abstract End wall flows contribute the most crucial role in loss generation for axial flow turbine and compressor blades. These losses lead to modify the blade loading and overall performance in terms of stable operating range. Present study aimed to determine the end wall flow streams in a low speed low pressure linear turbine cascade vane using numerical approach. The study includes two sections. The first section includes an attempt to understand different secondary flow streams available at end wall. Location of generation of horseshoe vortex streams and subsequent vortex patterns are identified in the section. The selection of suitable turbulence model among SST (Shear Stress Transport) k–ω and SST γ–θ to identify end wall flow streams is studied in prior in the section. The steady state numerical study is performed using Reynolds Averaged Navier-Stoke’s Equations closed by SST γ–θ turbulence model. The computational results are validated with experimental results available in the literature and are found to be in good agreement. The study is extended for different inflow conditions in later section. The second section includes effect of flow incidence and turbulence intensity on the end wall secondary flow field. Inflow incidences considered for the study are −20°, −10°, 0° (design incidence), +10° and +20°. The inlet turbulence intensities are varied by 1% and 10% for each case. The results revealed different secondary flow patterns at an end wall and found the change in behavior with an inflow conditions. SST γ–θ turbulence model with lower turbulence intensity is more suitable to identify such flow behavior.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

Film cooling and secondary flows are major contributors to aerodynamic losses in turbine passages. This is particularly true in low aspect ratio nozzle guide vanes where secondary flows can occupy a large portion of the passage flow field. To reduce losses, advanced cooling concepts and secondary flow control techniques must be considered. To this end, combustor bleed cooling flows introduced through an inclined slot upstream of the airfoils in a nozzle passage were experimentally investigated. Testing was performed in a large-scale, high-pressure turbine nozzle cascade comprised of three airfoils between one contoured and one flat endwall. Flow was delivered to this cascade with high-level (∼9%), large-scale turbulence at a Reynolds number based on inlet velocity and true chord length of 350,000. Combustor bleed cooling flow was injected through the contoured endwall upstream of the contouring at bleed-to-core mass flow rate ratios ranging from 0 to 6%. Measurements with triple-sensor, hot-film anemometry characterize the flow field distributions within the cascade. Total and static pressure measurements document aerodynamic losses. The influences of bleed mass flow rate on flow field mean streamwise and cross-stream velocities, turbulence distributions, and aerodynamic losses are discussed. Secondary flow features are also described through these measurements. Notably, this study shows that combustor bleed cooling flow imposes no aerodynamic penalty. This is atypical of schemes where coolant is introduced within the passage for the purpose of endwall cooling. Also, instead of being adversely affected by secondary flows, this type of cooling is able to reduce secondary flow effects.


2006 ◽  
Vol 129 (3) ◽  
pp. 608-618 ◽  
Author(s):  
Hans-Jürgen Rehder ◽  
Axel Dannhauer

Within a European research project, the tip endwall region of low pressure turbine guide vanes with leakage ejection was investigated at DLR in Göttingen. For this purpose a new cascade wind tunnel with three large profiles in the test section and a contoured endwall was designed and built, representing 50% height of a real low pressure turbine stator and simulating the casing flow field of shrouded vanes. The effect of tip leakage flow was simulated by blowing air through a small leakage gap in the endwall just upstream of the vane leading edges. Engine relevant turbulence intensities were adjusted by an active turbulence generator mounted in the test section inlet plane. The experiments were performed with tangential and perpendicular leakage ejection and varying leakage mass flow rates up to 2%. Aerodynamic and thermodynamic measurement techniques were employed. Pressure distribution measurements provided information about the endwall and vane surface pressure field and its variation with leakage flow. Additionally streamline patterns (local shear stress directions) on the walls were detected by oil flow visualization. Downstream traverses with five-hole pyramid type probes allow a survey of the secondary flow behavior in the cascade exit plane. The flow field in the near endwall area downstream of the leakage gap and around the vane leading edges was investigated using a 2D particle image velocimetry system. In order to determine endwall heat transfer distributions, the wall temperatures were measured by an infrared camera system, while heat fluxes at the surfaces were generated with electric operating heating foils. It turned out from the experiments that distinct changes in the secondary flow behavior and endwall heat transfer occur mainly when the leakage mass flow rate is increased from 1% to 2%. Leakage ejection perpendicular to the main flow direction amplifies the secondary flow, in particular the horseshoe vortex, whereas tangential leakage ejection causes a significant reduction of this vortex system. For high leakage mass flow rates the boundary layer flow at the endwall is strongly affected and seems to be highly turbulent, resulting in entirely different heat transfer distributions.


Author(s):  
Luzeng Zhang ◽  
Hee Koo Moon

Film cooling effectiveness was measured on a contoured endwall surface using the pressure sensitive paint (PSP) technique. A double staggered row of holes was adopted to supply cooling air in front of the nozzle leading edges. To simulate realistic engine configuration, a back-facing step was built, which was located upstream from the film injection. Nitrogen gas was used to simulate film cooling flow as a tracer gas to indicate oxygen concentration such that film effectiveness by the mass transfer analogy could be obtained. Cooling mass flow was controlled to be from 0.5% to 3.0% of the mainstream mass flow. Film effectiveness distributions were measured on the endwall surface for both smooth (baseline) and back-facing step inlet configurations. For the smooth inlet case, film effectiveness increased nonlinearly with mass flow rate, indicating a strong interference between the cooling jets and the secondary flows. At lower mass flow ratios, the secondary flow dominated the near wall flow field, resulting in a low film effectiveness value. At higher mass flow ratios, the cooling jet momentum dominated the near wall flow field, resulting in a higher film effectiveness. For the back-facing step inlet configuration, the values of film effectiveness were reduced significantly, suggesting a stronger secondary flow interaction. In addition to the comparison between the smooth and back-facing step inlet configurations, comparison to previous data by the authors on a flat endwall was also made.


Author(s):  
Hans-Ju¨rgen Rehder ◽  
Axel Dannhauer

Within a European research project the tip end wall region of LP turbine guide vanes with leakage ejection was investigated at DLR in Go¨ttingen. For this purpose a new cascade wind tunnel with three large profiles in the test section and a contoured end wall was designed and built up, representing 50% height of a real low pressure turbine (LPT) stator and simulating the casing flow field of shrouded vanes. The effect of tip leakage flow was simulated by blowing air through a small leakage gap in the end wall just upstream of the vane leading edges. Engine relevant turbulence intensities were adjusted by an active turbulence generator mounted in the test section inlet plane. The experiments were performed with tangential and perpendicular leakage ejection and varying leakage mass flow rates up to 2%. Aerodynamic and thermodynamic measurement techniques were employed. Pressure distribution measurements provided information about the end wall and vane surface pressure field and its variation with leakage flow. Additionally streamline pattern (local shear stress directions) on the walls were detected by oil flow visualization. Downstream traverses with 5-hole pyramid type probes allow a survey of the secondary flow behavior in the cascade exit plane. The flow field in the near end wall area downstream of the leakage gap and around the vane leading edges was investigated using a 2D Particle Image Velocimetry (PIV) system. In order to determine end wall heat transfer distributions, the wall temperatures were measured by an infra-red camera system, while heat fluxes at the surfaces were generated with electric operating heating foils. It turned out from the experiments that distinct changes in the secondary flow behavior and end wall heat transfer mainly occur when the leakage mass flow rate is increased from 1% to 2%. Leakage ejection perpendicular to the main flow direction amplifies the secondary flow, in particular the horse-shoe vortex, whereas tangential leakage ejection causes a significant reduction of this vortex system. For high leakage mass flow rates the boundary layer flow at the end wall is strongly affected and seems to be highly turbulent, resulting in entirely different heat transfer distributions.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Shyang Maw Lim ◽  
Anders Dahlkild ◽  
Mihai Mihaescu

This research was primary motivated by limited efforts to understand the effects of secondary flow and flow unsteadiness on the heat transfer and the performance of a turbocharger turbine subjected to pulsatile flow. In this study, we aimed to investigate the influence of exhaust manifold on the flow physics and the performance of its downstream components, including the effects on heat transfer, under engine-like pulsatile flow conditions. Based on the predicted results by detached eddy simulation (DES), qualitative and quantitative flow fields analyses in the scroll and the rotor's inlet were performed, in addition to the quantification of turbine performance by using the flow exergy methodology. With the specified geometry configuration and exhaust valve strategy, our study showed that (1) the exhaust manifold influences the flow field and the heat transfer in the scroll significantly and (2) although the exhaust gas blow-down disturbs the relative flow angle at rotor inlet, the consequence on the turbine power is relatively small.


2017 ◽  
Vol 129 ◽  
pp. 1117-1124 ◽  
Author(s):  
Alireza Ameli ◽  
Antti Uusitalo ◽  
Teemu Turunen-Saaresti ◽  
Jari Backman

Sign in / Sign up

Export Citation Format

Share Document