Forced Response of Mistuned Bladed Discs in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results

Author(s):  
Evgeny Petrov ◽  
Luca Di Mare ◽  
Holger Hennings ◽  
Robert Elliott

An integrated experimental-numerical study of forced response for a mistuned bladed disc has been performed. A full chain for the predictive forced response analysis has been developed including data exchange between the CFD code and a code for the prediction of the nonlinear forced response for a bladed disc. The experimental measurements are performed at a full-scale single stage test rig with excitation by aerodynamic forces from gas flow. Numerical modelling approaches and the test rig setup are discussed. Comparison of experimentally measured and predicted values of blade resonance frequencies and response levels for a mistuned bladed disc without dampers is performed. A good correspondence between frequencies at which individual blades have maximum response levels is achieved. The effects of structural damping and underplatform damper parameters on amplitudes and resonance frequencies of the bladed disc are explored. It is shown that the underplatform damper significantly reduces scatters in values of the individual blade frequencies and maximum forced response levels.

Author(s):  
Evgeny Petrov ◽  
Luca Di Mare ◽  
Holger Hennings ◽  
Robert Elliott

An integrated experimental-numerical study of forced response for a mistuned bladed disk has been performed. A full chain for the predictive forced response analysis has been developed including data exchange between the computational fluid dynamics code and a code for the prediction of the nonlinear forced response for a bladed disk. The experimental measurements are performed at a full-scale single stage test rig with excitation by aerodynamic forces from gas flow. The numerical modeling approaches and the test rig setup are discussed. Comparison of experimentally measured and predicted values of blade resonance frequencies and response levels for a mistuned bladed disk without dampers is performed. A good correspondence between frequencies at which individual blades have maximum response levels is achieved. The effects of structural damping and underplatform damper parameters on amplitudes and resonance frequencies of the bladed disk are explored. It is shown that the underplatform damper significantly reduces scatters in values of the individual blade frequencies and maximum forced response levels.


Author(s):  
E. P. Petrov ◽  
Z.-I. Zachariadis ◽  
A. Beretta ◽  
R. Elliott

A new effective method for comprehensive modelling of gas flow effects on vibration of nonlinear vibration of bladed discs has been developed for a case when effect of the gas flow on the mode shapes is significant. The method separates completely the structural dynamics calculations from the significantly more computationally expensive computational fluid dynamics (CFD) calculations while provides the high accuracy of modelling for aerodynamic effects. A comprehensive analysis of the forced response using the new method has been performed for a realistic turbine bladed disc with root-disc joints, tip and underplatform dampers. The full chain of aerodynamic and structural calculations are performed: (i) determination of boundary conditions for CFD; (ii) CFD analysis; (iii) calculation of the aerodynamic characteristics required by the new method; (iv) nonlinear forced response analysis using the MAIM. The efficiency of the friction damping devices has been studied and compared for several resonance frequencies and engine orders. Advantages of the method for aerodynamic effect modelling have been demonstrated.


Author(s):  
E. P. Petrov ◽  
Z.-I. Zachariadis ◽  
A. Beretta ◽  
R. Elliott

A new effective method for comprehensive modeling of gas flow effects on vibration of nonlinear vibration of bladed disks has been developed for a case when the effect of the gas flow on the mode shapes is significant. The method separates completely the structural dynamics calculations from the significantly more computationally expensive computational fluid dynamics (CFD) calculations while providing the high accuracy of modeling for aerodynamic effects. A comprehensive analysis of the forced response using the new method has been performed for a realistic turbine bladed disk with root-disk joints, tip, and under-platform dampers. The full chain of aerodynamic and structural calculations are performed: (i) determination of boundary conditions for CFD, (ii) CFD analysis, (iii) calculation of the aerodynamic characteristics required by the new method, and (iv) nonlinear forced response analysis using the modal aerodynamic influence matrix (MAIM). The efficiency of the friction damping devices has been studied and compared for several resonance frequencies and engine orders. Advantages of the method for aerodynamic effect modeling have been demonstrated.


Author(s):  
Tobias R. Müller ◽  
Damian M. Vogt ◽  
Klemens Vogel ◽  
Bent A. Phillipsen ◽  
Peter Hönisch

The effects of detailing on the prediction of forced-response in a transonic axial turbine stage, featuring a parted stator design, asymmetric inlet and outlet casings as well as rotor cavities, is investigated. Ensuring the mechanical integrity of components is of paramount importance for the safe and reliable operation of turbomachines. Among others, flow induced resonance excitation can lead to high-cycle fatigue (HCF) and potentially to damage of components unless properly damped. This numerical study is assessing the necessary degree of detailing in terms of spatial and temporal discretization, boundary conditions of the pre-stressed rotor geometry as well as geometrical detailing for the reliable prediction of the aerodynamic excitation of the structure. In this context, the sensitivity of the aerodynamic forcing is analyzed by means of the generalized force criterion, showing a significant influence for some of the investigated variations of the numerical model. Moreover, the origin and further progression of several low-engine-orders (LEO) within the flow field, as well as their interaction with different geometric details has been analyzed based on the numerical results obtained from a full 360° CFD-calculation of the investigated turbine stage. The predicted flow induced vibration of the structure has been validated by means of a full forced-response analysis, where a good agreement with tip-timing data has been found.


Author(s):  
J. J. Moore ◽  
A. Palazzolo ◽  
R. Gadangi ◽  
T. A. Nale ◽  
S. A. Klusman ◽  
...  

Abstract A high speed damper test rig has been assembled at Texas A&M University to develop rotordynamic dampers for rocket engine turbopumps that operate at cryogenic temperatures, such as those used in the Space Shuttle Main Engines (SSMEs). Damping is difficult to obtain in this class of turbomachinery due to the low temperature and viscosity of the operating fluid. An impact damper has been designed and tested as a means to obtain effective damping in a rotorbearing system. The performance and behavior of the impact damper is verified experimentally in a cryogenic test rig at Texas A&M. Analytical investigations indicate a strong amplitude dependence on the performance of the impact damper. An optimum operating amplitude exists and is determined both analytically and experimentally. In addition, the damper performance is characterized by an equivalent viscous damping coefficient. The test results prove the impact damper to be a viable means to suppress vibration in a cryogenic rotorbearing system.


2007 ◽  
Vol 347 ◽  
pp. 159-164 ◽  
Author(s):  
Teresa Berruti ◽  
Christian M. Firrone ◽  
M. Pizzolante ◽  
Muzio M. Gola

Forced vibrations can lead to an irreparable damage of a blade array. Devices called “underplatform damper” that dissipate the vibration energy are employed in order to reduce blade vibration amplitude. The present paper deals with the design of the underplatform damper. A numerical code to calculate the forced response of a blade array with dampers has been previously purposely developed. A method is here proposed for the estimation of the unknown contact parameters demanded by the code. The computation results are here validated by means of comparison with experimental results on a static test rig. Three dampers with different shape are tested.


1995 ◽  
Vol 117 (3A) ◽  
pp. 300-310 ◽  
Author(s):  
J. J. Moore ◽  
A. B. Palazzolo ◽  
R. Gadangi ◽  
T. A. Nale ◽  
S. A. Klusman ◽  
...  

A high speed damper test rig has been assembled at Texas A&M University to develop rotordynamic dampers for rocket engine turbopumps that operate at cryogenic temperatures, such as those used in the space shuttle main engines (SSMEs). Damping is difficult to obtain in this class of turbomachinery due to the low temperature and viscosity of the operating fluid. An impact damper has been designed and tested as a means to obtain effective damping in a rotorbearing system. The performance and behavior of the impact damper is verified experimentally in a cryogenic test rig at Texas A&M. Analytical investigations indicate a strong amplitude dependence on the performance of the impact damper. An optimum operating amplitude exists and is determined both analytically and experimentally. In addition, the damper performance is characterized by an equivalent viscous damping coefficient. The test results prove the impact damper to be a viable means to suppress vibration in a cryogenic rotorbearing system.


Author(s):  
E. P. Petrov

A method has been developed for high-accuracy analysis of forced response levels for mistuned bladed disks vibrating in gas flow. Aerodynamic damping, the interaction of vibrating blades through gas flow, and the effects of structural and aerodynamic mistuning are included in the bladed disk model. The method is applicable to cases of high mechanical coupling of blade vibration through a flexible disk and, possibly shrouds, to cases with stiff disks and low mechanical coupling. The interaction of different families of bladed disk modes is included in the analysis providing the capability of analyzing bladed disks with pronounced frequency veering effects. The method allows the use of industrial-size sector models of bladed disks for analysis of forced response of a mistuned structure. The frequency response function matrix of a structurally mistuned bladed disk is derived with aerodynamic forces included. A new phenomenon of reducing bladed disk forced response by mistuning to levels that are several times lower than those of their tuned counterparts is revealed and explained.


Author(s):  
E. P. Petrov

A method has been developed for high-accuracy analysis of forced response levels for mistuned bladed discs vibrating in gas flow. Aerodynamic damping, the interaction of vibrating blades through gas flow and the effects of structural and aerodynamic mistuning are included in the bladed disc model. The method is applicable to cases of high mechanical coupling of blade vibration through a flexible disc and, possibly shrouds, and to cases with stiff discs and low mechanical coupling. The interaction of different families of bladed disc modes is included in the analysis providing the capability of analysing bladed discs with pronounced frequency veering effects. The method allows the use of industrial-size sector models of bladed discs for analysis of forced response of a mistuned structure. The frequency response function matrix of a structurally mistuned bladed disc is derived with aerodynamic forces included. A new phenomenon of reducing bladed disc forced response by mistuning to levels that are several times lower than those of their tuned counterparts is revealed and explained.


Author(s):  
Jason J. Kielb ◽  
Reza S. Abhari ◽  
Michael G. Dunn

Forced response predictive capabilities have advanced rapidly in the past decade because of increased emphasis on high cycle fatigue concerns. Progress in computation fluid dynamic (CFD) codes has allowed for the prediction of complex unsteady flows, but fidelity and accuracy of the unsteady solutions is uncertain. This uncertainty is due in part to a lack of representative experimental data to validate the forced response calculations. This study presents experimental results of both on-blade unsteady pressure and structural response in a full-scale rotating turbine at representative steady aerodynamic conditions. The primary focus of these experiments was on vane wake excited forced response in a subsonic turbine and its variation with axial rotor/stator spacing. Comparisons of data with quasi 3-D unsteady, multi-blade row CFD predictions showed good agreement for the unsteady pressure amplitude near the midspan. A significant increase in unsteady pressure level was seen for the experiments at a 10% closer axial rotor/stator spacing, particularly near the tip and on the suction surface. The study also included structural response characteristics for a bending, torsion, and axial vibration mode and the interaction with the aerodynamic response.


Sign in / Sign up

Export Citation Format

Share Document