Modeling of Turbulent Combustion Process and Lean Blowout of Diffusion and Premixed Flames Using a Combined Approach

Author(s):  
Yu. G. Kutsenko ◽  
A. A. Inozemtsev ◽  
L. Y. Gomzikov

Most of the modern combustor’s designs use staged concepts for reducing thermal NO emissions. Usually, a combustion process takes place inside the main zone, which uses very lean premixed fuel/air mixtures. A diffusion pilot zone supports combustion process inside a lean main zone. Thermal NO formation process takes place predominantly inside hot diffusion flame. So, operation modes of pilot and main zones must be arranged to provide low NO emissions of pilot zone and maintain flame stability inside the main zone simultaneously. In this paper, a new turbulent combustion model is presented. This model allows to model diffusion and premixed flames and takes into account various physical processes, which lead to flame destabilization. The model uses an equation for reaction progress variable. Within the considered approach this equation has two source terms. These terms are responsible for different conditions of combustion process: diffusion flames and premixed flames, and distributed reacting zones. This paper studies the problem, concerning modeling of lean blowout process of diffusion flame front. To test the proposed combustion model we have simulated lean blowout process inside combustion zone of a gas turbine combustor. Good predictions of lean blowout limits were obtained.

Author(s):  
Yu. G. Kutsenko ◽  
S. F. Onegin ◽  
L. Y. Gomzikov

Most of the modern combustor’s designs use staged concepts for reducing thermal NO emissions. Usually, a combustion process takes place inside the main zone, which uses very lean premixed fuel/air mixtures. A diffusion pilot zone supports combustion process inside a lean main zone. Thermal NO formation process takes place predominantly inside hot diffusion flame. So, operation modes of pilot and main zones must be arranged to provide low NO emissions of pilot zone and maintain flame stability inside the main zone simultaneously. In this paper a concept of new turbulent model combustion model is presented. This model allows to model diffusion and premixed flames and takes into account various physical processes, which lead to flame destabilization. The model uses an equation for reaction progress variable. In the frameworks of considered approach this equation has three source terms. These terms are responsible for different conditions of combustion process: diffusion flames, premixed flames and distributed reaction zones. A proposed model was widely validated for different types of combustion chambers such as: 1) Bluff-body flameholder (lean premixed combustion: modeling of lean blow out); 2) Conventional diffusion regime of combustion chamber of gas turbine engine (modeling of flame stabilization and NO emissions); 3) Combined combustion regime of combustion chamber: burning process is inside pilot diffusion and main premixed zones (NO emissions and lean blow out limits for several operational modes). These tests had shown a good agreement of experimentally obtained data with results of simulations.


2000 ◽  
Author(s):  
J. Réveillon

Abstract Turbulent combustion of two-phase flows is studied by 2D direct numerical simulation. A spray of droplets is injected inside a jet with a preheated coflow. Triple flames appear to represent the global structure of the flame around the spray. Attention is focused upon global and local flame structures and droplet histories. A whole range of combustion phenomena are observed and described. The observed prevailing occurrence, for example, of the rich premixed flame compared to the diffusion flame is of great importance for any turbulent combustion model which must accurately estimate the heat release rate. This prevailing structure depends strongly on the droplet size and combustion. A competition between premixed and diffusion regimes may also occur. It has been shown that in some cases, local clusters of droplets are able either to cross the main flame front and burn in pure oxidizer or to break through the diffusion flame. It is observed that very complex interactions can emerge locally between premixed flames, diffusion flames and droplets.


Author(s):  
Baifang Zuo ◽  
David L. Black ◽  
Clifford E. Smith

The effect of turbulence on chemical reactions is known to be important in many gas turbine combustor applications. There are only a few established models that can capture turbulence-combustion interaction in CFD codes, and all of these models are either very expensive (e.g. Monte Carlo PDF model) or limited in what types of flames can be analyzed (e.g. laminar flamelet). Assumed PDF models have been a popular choice because they are inexpensive and can handle all flame types (e.g. diffusion, premixed and partially premixed). However, assumed PDF models are typically restricted to single, one-step global mechanisms; or are a function of species and quickly become computationally expensive. CFD Research Corporation has recently developed and validated a new assumed PDF turbulence chemistry interaction model for multi-step chemistry. The model adopts an assumed, two-variable joint-PDF to model a wide-range of turbulent reacting flows. The two variables defining the PDF are the mixture fraction and reaction progress, representing species diffusion and flame propagation. A significant advantage of this new approach is its wide range of applicability for premixed, diffusion, and partially premixed flames. Allowing more detailed chemistry for species and combustion predictions enables complex chemical reaction processes including pollutant formation, flame ignition, and flame quenching to be studied. The model is also computationally efficient, with only a minor increase in computational expense with either species or number of global reaction steps. The newly developed model was first validated using a diffusion flame from a piloted burner developed at the University of Sydney. Three different methane bulk jet velocities were used to investigate the model’s behavior on turbulent diffusion flames. Simulation data were compared with the experimental measurements and the simulation results performed by Pope (Masri and Pope, 1990) using a velocity-composition joint PDF transport equation solved by the Monte Carlo method. To validate the model on premixed flames, the data of Moreau et al. (Moreau et al., 1974, 1976, 1977) were used. Data were collected on a mixing layer stabilized burner, where the main flow into the combustor was a premixed mixture of methane and air. Parallel to the main stream, a pilot stream of hot combustion products at 2000 K was injected for flame stabilization. The results demonstrate the wide applicability of the new model for practical, turbulent combustion applications.


Author(s):  
F. Wang ◽  
Y. Huang ◽  
L. X. Zhou ◽  
C. X. Xu ◽  
J. Cao

If the instantaneous chemistry reaction rate is taken as ws = Bρ2Y1Y2 exp(−E/RT) = ρ2Y1Y2K, here K is a contraction for the exponential term. Then, ignoring the three order fluctuation correlation term, the average reaction rate could be ws = ρ2(Y1Y2K + Y1′Y2′K + Y1K′Y2′ + Y2K′Y1′). The authors have simulated jet combustion and swirl combustion using this kind of second order moment (SOM) turbulent combustion model. The predictions are close to experimental data in most regions. In order to improve the SOM turbulent combustion model, the effect of various correlation moments in the simulation of turbulent swirl combustion and NO formation is studied by comparing different SOM turbulence-chemistry models, including the unified second-order moment (USM) model, the model accounting for only the time-averaged reaction-rate coefficient, the model accounting for only the concentration fluctuation and the model accounting for both the time-averaged reaction-rate coefficient and the concentration fluctuation. These models are incorporated into the FLUENT code for a methane-air swirling combustion and NO formation under various swirl numbers. The magnitude of various correlations and their effect on the time-averaged reaction rate are analyzed, and the simulation results are compared with the corresponding measurement results. The results showed that the USM model gives the best agreement with the experimental results and among various correlation moments the correlation of reaction-rate coefficient fluctuation with the concentration fluctuation is most important. Additionally, a direct numerical simulation (DNS) of three-dimensional channel turbulent reacting flows with consideration of buoyancy effect using a spectral method was carried out. The statistical results are shown that K′Y′ are larger than Y1′Y2′.


Author(s):  
A. Cipriano ◽  
S. Gasperetti ◽  
G. Mariotti ◽  
E. Paganini

The spontaneous emission of light by pure premixed flames due to chemiluminescence phenomenon has been widely investigated in order to develop monitoring and diagnostic systems of the combustion process and ultimately to control it. In most cases attention has been concentrated on the lines corresponding to the emissions by OH*, CH* and C2* radicals, which are usually well identified in laboratory scale flames. The present work extends the study to industrial premixed flames, with diffusion pilot flame, at atmospheric and full pressure. The experiments show that for the selected configuration there is a threshold value of the diffusion flame (about 8% over the total amount of the fuel injected in the combustor) under which the diffusion flame has a very low influence in the emission light. The OH* emission is well correlated to the NOx emission while the correlation with the equivalence ratio depends on the combustion condition.


Author(s):  
Uwe Krüger ◽  
Stefan Hoffmann ◽  
Werner Krebs ◽  
Hans Judith ◽  
Dieter Bohn ◽  
...  

Environmental compatibility requires low emission burners for gas turbine power plants as well as for jet engines. In the past significant progress has been made developing low NOx and CO burners by introducing lean premixed techniques. Unfortunately these burners often have a more pronounced tendency than conventional burner designs to produce combustion driven oscillations. The oscillations may be excited to such an extent that strong pulsation may possibly occur; this is associated with a risk of engine failure and higher NOx emissions. In order to describe the acoustical behaviour of the complete burner system the determination of the transfer function of the flame itself is crucial. Using a new method which was presented by Bohn, Deutsch and Krüger (1996) and Bohn, Li, Krüger and Matousckek (1997), the dynamic flame behaviour can be predicted by means of a full Navier-Stokes-simulation of the complex combustion process for the steady-state as well as for the transient situation. This method has been successfully used by the authors to obtain the frequency response of turbulent diffusion flames and laminar premixed flames. For the application in modern gas turbines the influence of turbulence on the dynamic behaviour of premixed flames is of big interest. Therefore, this paper presents numerical studies of a turbulent premixed flame configuration for which experimental data is available in the literature. Two different combustion models have been used for the steady-state as well as for the transient calculations. With the improved model, which takes into account the chemical kinetics and the interaction between turbulence and kinetics, good agreement has been found for the steady-state results and for the frequency response of the flame.


Author(s):  
Baolu Shi ◽  
Tatsuya Kowari ◽  
Daisuke Shimokuri ◽  
Satoru Ishizuka

Methane/oxygen-air combustion has been attempted by using a rapidly mixed type tubular flame burner with four slits, from two of which a fuel is injected and from another two an oxidizer is injected. The oxygen concentration (molar) in the oxygen-air oxidizer has been varied from 21% (air) to 100% (pure oxygen). Results show that uniform tubular flame combustion can be obtained for a wide range of equivalence ratios, if the oxygen molar concentration in the oxygen-air oxidizer is less than about 50%. Above 50%, however, very intense turbulent combustion occurs frequently and the circular-shaped tubular flame is deformed as oval-shaped for most equivalence ratios. The uniform tubular flame range is reduced and quite limited in the vicinity of lean condition. Detailed observations show that for pure (or near pure) oxygen oxidizer, two diffusion flames are established between the fuel and oxidizer streams at the exits of the fuel slits, which prevents fuel from mixing with oxygen, resulting in a violent turbulent combustion downstream the slits. With use of a burner with smaller slit width, however, formation of the diffusion flame is inhibited and a uniform tubular flame can be established, although still limited close to the lean extinction limit. To fully understand the flame characteristics above, the burning velocities are calculated for various equivalence ratios as well as for various oxygen concentrations in the oxygen-air oxidizer using the CHEMKIN PREMIX code with the GRI kinetic mechanism.


2000 ◽  
Vol 123 (4) ◽  
pp. 832-838 ◽  
Author(s):  
D. E. Bohn ◽  
J. Lepers

This paper presents the application of a detailed combustion model for turbulent premixed combustion to a swirl-stabilized premix burner. Computations are carried out for atmospheric pressure and elevated pressure of 9 atm. Results of computations for atmospheric pressure are compared to experimental data. The combustion model is of the joint-pdf type. The model is based on the characteristics of turbulent combustion under conditions typical for gas turbine burners. It incorporates a systematically reduced six-step reaction mechanism yielding direct computation of radical concentrations via transport equations or steady-state assumptions. The model is able to simulate combustion of fuel gases containing methane, carbon monoxide, hydrogen, carbon dioxide, and water. It is therefore applicable to both methane and low-BTU fuel gas combustion. Based on computed radical concentrations, a post-processor for NOx formation is applied. This post-processor considers thermal formation of nitrogen oxides and NO formation via the nitrous oxide path.


Author(s):  
Rakesh Yadav ◽  
Pravin Nakod ◽  
Pravin Rajeshirke

The steady laminar flamelet model (SLFM) (Peters, 1984, “Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,” Prog. Energy Combust. Sci., 10(3), pp. 319–339; Peters, 1986, “Laminar Flamelet Concepts in Turbulent Combustion,” Symp. (Int.) Combust., 21(1), pp. 1231–1250) has been shown to be reasonably good for the predictions of mean temperature and the major species in turbulent flames (Borghi, 1988, “Turbulent Combustion Modeling,” Prog. Energy Combust. Sci., 14(4), pp. 245–292; Veynante and Vervisch, 2002, “Turbulent Combustion Modeling,” Prog. Energy Combust. Sci., 28(3), pp. 193–266). However, the SLFM approach has limitations in the prediction of slow chemistry phenomena like NO formation (Benim and Syed, 1998, “Laminar Flamelet Modeling of Turbulent Premixed Combustion,” Appl. Math. Model., 22(1–2), pp. 113–136; Heyl and Bockhorn, 2001, “Flamelet Modeling of NO Formation in Laminar and Turbulent Diffusion Flames,” Chemosphere, 42(5–7), pp. 449–462). In the case of SLFM, the turbulence and chemistry are coupled through a single variable called scalar dissipation, which is representative of the strain inside the flow. The SLFM is not able to respond to the steep changes in the scalar dissipation values and generally tends to approach to the equilibrium solution as the strain relaxes (Haworth et al., 1989, “The Importance of Time-Dependent Flame Structures in Stretched Laminar Flamelet Models for Turbulent Jet Diffusion Flames,” Symp. (Int.) Combust., 22(1), pp. 589–597). A pollutant like NO is formed in the post flame zones and with a high residence time, where the scalar dissipation diminishes and hence the NO is overpredicted using the SLFM approach. In order to improve the prediction of slow forming species, a transient history of the scalar dissipation evolution is required. In this work, a multiple unsteady laminar flamelet approach is implemented and used to model the NO formation in two turbulent diffusion flames using detailed chemistry. In this approach, multiple unsteady flamelet equations are solved, where each flamelet is associated with its own scalar dissipation history. The time averaged mean variables are calculated from weighted average contributions from different flamelets. The unsteady laminar flamelet solution starts with a converged solution obtained from the steady laminar flamelet modeling approach. The unsteady flamelet equations are, therefore, solved as a post processing step with the frozen flow field. The domain averaged scalar dissipation for a flamelet at each time step is obtained by solving a scalar transport equation, which represents the probability of occurrence of the considered flamelet. The present work involves the study of the effect of the number of flamelets and also the different methods of probability initialization on the accuracy of NO prediction. The current model predictions are compared with the experimental data. It is seen that the NO predictions improves significantly even with a single unsteady flamelet and further improves marginally with an increase in number of unsteady flamelets.


Author(s):  
Gustavo Fontana ◽  
Enzo Galloni ◽  
Elio Jannelli

Abstract Combustion models, used in spark-ignition engine modeling, are reviewed. Different approaches for representing the main combustion features are reported. Limitations in simulating such a complex phenomenon as turbulent combustion in engines are highlighted as well. In order to compare different combustion models, the multidimensional program KIVA-3V has been used. The behavior of an actual spark-ignition engine has been investigated. In particular, simulation results, using simple chemical kinetics and mixing-controlled models, are compared. The results obtained, compared to measured data, confirm that different combustion models can lead to a satisfactory prediction of engine performances. But, in many cases, these models require experimental data for determining the model characteristic constants. A hybrid combustion model is proposed. It is able to provide a good reproduction of engine combustion process and, in particular, the model seems to be less sensitive to the engine operation. The computation results are compared to the measured data.


Sign in / Sign up

Export Citation Format

Share Document