CFD Investigation of Temperature Rise in a Combustor Test Rig Exhaust System

Author(s):  
Joan Boulanger ◽  
Yinghua Han ◽  
Leiyong Jiang ◽  
Shaji Manipurath

This paper presents a study of temperature rise in the exhaust system of a combustor test rig, Test Cell #1, at the Gas Turbine Laboratory, Institute for Aerospace Research, the National Research Council of Canada. As the flow regime is supersonic with a mixture of hot air & water vapour, condensation of water vapour in the system is suggested to explain the temperature rise observed along the exhaust pipe. The method of Computational Flow Dynamics is used to carry out the first investigation on this hypothesis. The exhaust system is reproduced by CAD, meshed and modelled by the ANSYS-FLUENT CFD package. Simulations of a two-phase complex mixture are performed. The numerical results indicate that the pressure control devices in the exhaust flow towards the stack create phenomena similar to nozzles and yield condensed water into the system. The simulations of liquid phase content and temperature fields are qualitatively consistent with experimental observations and support the hypothesis that condensation is occurring and may therefore threaten the structural integrity of the system through thermal effects.

2014 ◽  
Vol 937 ◽  
pp. 74-79 ◽  
Author(s):  
Shu Zhan Bai ◽  
Shuai Guo Lang ◽  
Ke Ping Yuan ◽  
Yang Liu ◽  
Guo Xiang Li

Avoiding the urea deposition in the exhaust stream is one of the basic requirements for SCR system normal application. Unreasonable structure design, machining and installation position all could lead to urea crystallization on the wall of exhaust pipe and the front end surface of the catalyst, in addition, unreasonable control strategy also could deteriorate this phenomenon. The components of the urea depositions are the urea and cyanuric acid analyzed by thermogravimetry - FTIR technology. The integrated injector mounting is designed to alleviate the urea crystallization based on analysis results. The engine test and the vehicle road test are all shown that the optimal structural design and calibration strategies could avoid crystallization and sedimentation effectively in the exhaust system.


2009 ◽  
Vol 8 (1) ◽  
pp. 24 ◽  
Author(s):  
I. C. Acunha Jr ◽  
P. S. Schneider

Evaporative condensers present a hard problem for numerical modeling because of the complex phenomena of heat and mass transfer outside of the bundle tubes in turbulent flows. The goal of this work is to study the air and water behavior inside an evaporative condenser operating with ammonia as the refrigerant fluid. A commercial CFD software package (FLUENT) is employed to predict the two-phase flow of air and water droplets in this equipment. The air flow is modeled as a continuous phase using the Eulerian approach while the droplets water flow is modeled as a disperse phase with Lagrangian approach. The coupling between pressure and velocity fields is performed by the SIMPLE algorithm. The pressure, velocity and temperature fields are used to perform qualitative analyses to identify functional aspects of the condenser, while the temperature and the relative humidity evolution contributed to verify the agreement between the results obtained with the numerical model and those presented by equipment manufacturer.


Author(s):  
Paul A. Feenstra ◽  
Victor P. Janzen ◽  
Bruce A. W. Smith

Tests are being planned which will use AECL’s MR-3 Freon test facility and a Multi-Span U-Bend (MSUB) test rig to investigate the dynamics of tube vibration in two-phase flow, in particular those mechanisms that can cause excessive damage to steam-generator tubes. In preparation for the tests, free- and forced-vibration tests were conducted to measure the vibration energy dissipation (damping) of a single U-bend tube in air, with dry and wet anti-vibration bars, under a variety of tube-support conditions. This paper presents the relevant damping mechanisms and documents methods used to conduct the tests and to analyze the energy dissipated at the supports. Results indicate that for in-plane motion without tube-to-support contact, viscous damping related to wet AV B supports is much smaller than guidelines based on other types of supports suggest. To begin to examine the effects of the tube coming into contact with its supports, such as friction-related energy dissipation, the results of tests with light tube-to-support preloads are also presented.


2015 ◽  
Vol 19 (3) ◽  
pp. 989-1004 ◽  
Author(s):  
Ezddin Hutli ◽  
Valer Gottlasz ◽  
Dániel Tar ◽  
Gyorgy Ezsol ◽  
Gabor Baranyai

The aim of this work is to investigate experimentally the increase of mixing phenomenon in a coolant flow in order to improve the heat transfer, the economical operation and the structural integrity of Light Water Reactors-Pressurized Water Reactors (LWRs-PWRs). Thus the parameters related to the heat transfer process in the system will be investigated. Data from a set of experiments, obtained by using high precision measurement techniques, Particle Image Velocimetry and Planar Laser-Induced Fluorescence (PIV and PLIF, respectively) are to improve the basic understanding of turbulent mixing phenomenon and to provide data for CFD code validation. The coolant mixing phenomenon in the head part of a fuel assembly which includes spacer grids has been investigated (the fuel simulator has half-length of a VVER 440 reactor fuel). The two-dimensional velocity vector and temperature fields in the area of interest are obtained by PIV and PLIF technique, respectively. The measurements of the turbulent flow in the regular tube channel around the thermocouple proved that there is rotation and asymmetry in the coolant flow caused by the mixing grid and the geometrical asymmetry of the fuel bundle. Both PIV and PLIF results showed that at the level of the core exit thermocouple the coolant is homogeneous. The discrepancies that could exist between the outlet average temperature of the coolant and the temperature at in-core thermocouple were clarified. Results of the applied techniques showed that both of them can be used as good provider for data base and to validate CFD results.


Author(s):  
Guohai Jia ◽  
Guoshuai Tian ◽  
Zicheng Gao ◽  
Dan Huang ◽  
Wei Li ◽  
...  

Abstract Cyclone venturi dryer is suitable for drying materials with large particle size and wide distribution. The working process of cyclone venturi dryer is a very complicated three-dimensional and turbulent motion, so it is difficult to be studied theoretically and experimentally. In order to study the internal flow characteristics of the biomass particle cyclone venturi dryer, the computational fluid dynamics (CFD) software was used to simulate the gas-solid two-phase flow field inside the cyclone venturi dryer. The continuous phase adopts the Realizable k-ε turbulence model and the particle phase is discrete. The effects of different injection volume on the pressure, velocity, and temperature fields inside a cyclone venturi dryer were analyzed. The results showed that the maximum pressure drop and velocity change inside the dryer were at the venturi pipe. The wet material of the cyclone venturi dryer was inhaled into the venturi contraction tube by the negative pressure formed after the highspeed airflow was ejected, thus the mixture was completed in the venturi throat. The wood debris material was mixed with the high-speed hot gas flow in the venturi throat and then sprayed into the diffusion pipe. In the diffusion pipe of venturi, the heat and mass transfer process of wet wood debris and heat flow in venturi diffusion tube was completed. It is in good agreement with the simulation results. This study can provide a reference for the optimization design of the related cyclone venturi dryer structure.


2020 ◽  
Vol 8 (12) ◽  
pp. 1036
Author(s):  
Kyong-Hyon Kim ◽  
Kyeong-Ju Kong

In order to design a diesel engine system and to predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. Gas flow analysis in a three-dimensional (3D) format needs a high-resolution workstation and an enormous amount of time for analysis. Calculation using the method of characteristics (MOC), which is a gas flow analysis in a one-dimensional (1D) format, has a fast calculation time and can be analyzed with a low-resolution workstation. However, there is a problem with poor accuracy in certain areas. It was assumed that the reason was that 1D could not implement the shape. The error that occurs in the shape of the bent pipe used in the intake and exhaust ports of the diesel engine was analyzed and to find a solution to the low accuracy, the results of the experiment and 1D analysis were compared. The discharge coefficient was calculated using the average mass flow rate, and as a result of applying it, the accuracy was improved for the maximum negative pressure by 0.56–1.93% and the maximum pressure by 3.11–7.86% among the intake pipe pressure results. The difference in phase of the exhaust pipe pressure did not improve. It is considered as a limitation of 1D analysis that does not improve even by applying the discharge coefficient. In the future, we intend to implement a bent pipe that cannot be realized in 1D using a 3D format and to prepare a method to supplement the reliability by using 1D–3D coupling.


Volume 3 ◽  
2004 ◽  
Author(s):  
Prem Chand ◽  
K. Govinda Rajulu ◽  
Y. Krishna Reddy

The paper presents a new approach to predict the two-phase performance of jet-pumps under interference conditions. We limit our study mainly to diffuser and transport regions of the jet pump. The five essential pre-requisites which form the backbone of our approach are a fairly generalized and accurate approach to (i) solid-fluid interaction, (ii) particle diffusion under generalized flow field, (iii) friction factor-Reynolds number equation, (iv) solid-fluid flow through ducts and (v) mixing of primary and secondary jets using the approach of Wang et al. [1] based on boundary layer concept. The extensive experimental data of several research workers along with fresh data generated on specially designed test-rig support the new approach.


Volume 2 ◽  
2004 ◽  
Author(s):  
ShiPing Yao ◽  
Robert E. Harrison ◽  
Jan R. Wright ◽  
Aleksandar Pavic ◽  
Paul Reynolds

The behaviour of humans jumping on flexible structures has become a matter of some importance for both structural integrity and also human tolerance. The issue is of great interest for stadia, footbridge and floor structures. A test rig has been developed for exploring the forces, accelerations and displacements that occur when a human subject jumps on a flexible structure where motion can be perceived. In tests reported earlier, it was found that the human is able to generate near resonant response of the structure but it was extremely difficult, if not impossible, to jump at or very near to the natural frequency of the structure when the structural vertical motion is significant. Also, the force developed by the subject was found to drop significantly near resonance. In this paper, the effect of the subject-to-structure mass ratio and the damping ratio of the structure on the ability of the subject to jump near resonance, and on the force drop out, is presented. It is shown that as the structure becomes more massive and more highly damped it moves less for nominally the same jumping excitation. In this situation, it becomes easier to jump near resonance and the degree of force drop out reduces, though it is still significant.


2018 ◽  
Vol 240 ◽  
pp. 01001 ◽  
Author(s):  
Omar Rafae Alomar ◽  
Rafie Rushdy Mohammed ◽  
Karam Hashim Mohammed

Two-Phase flow in an inclined rectangular porous media, under unsteady-state condition, has been numerically investigated in this article, based on the modified h-formulation of Two-Phase Mixture Model (TPMM). The governing equations have been discretised using Finite Volume Method (FVM) and solved iteratively in a SIMPLE-like manner. Effects of various parameters on the flow and temperature fields have been investigated, which clearly demonstrated that the inclination angle strongly affect the boiling initiation. Recirculating flow has been observed when the inclination angle θ>0˚. The results clearly indicated that the operating conditions and the porous medium properties have significant effects on the initiation and termination of phase change process. A closer inspection of the results reveals that the presence of a critical inclination angle depending on the value of K* and, Re1 which correspond to a maximum values of vapour volume. The modified h-formulation requires significantly less computational time as compared with the existing H-formulation of TPMM.


Sign in / Sign up

Export Citation Format

Share Document