A Method for Evaluating the Effect of Circumferential Inlet Distortion on the Aerodynamic Stability of Multi-Stage Axial-Flow Compressors

Author(s):  
Tsuguji Nakano ◽  
Andy Breeze-Stringfellow

A simple engineering parameter to evaluate the stability of high-speed multi-stage compressors with distorted inlet flow has been derived based on a simplified semi-compressible linear stability model. The parameter consists of steady-state flow quantities and geometric parameters of the compressor and it indicates that the circumferential integral of the slope of the steady-state individual blade row static pressure rise characteristics is important in the determination of the compressor stability limit in the presence of distortion. The parameter reduces to the author’s rotating stall inception parameter in the limit of non-distorted inlet flow. Since the model includes a downstream plenum and throttle, a condition for pure surge inception with undistorted inlet flow has been deduced. The pure surge conditions can be reduced to the classical dynamic and static instability conditions in the limit of a constant annulus area incompressible compressor. The results indicate that rotating stall always precedes surge instability, as many engineers and researchers would expect from experience. The parameter for instability with inlet distortion was calculated using test data measured in a high-speed 5-stage compressor with two different types of circumferential inlet distortion, and the results show that the parameter has a strong correlation with the data and is an improvement over the classical incompressible stability parameter. The results demonstrate that the parameter captures much of the physics important during the instability inception in a high-speed multi-stage compressor subjected to circumferential inlet distortion. The parameter clearly shows how each compressor component’s characteristics contribute to the overall stability in a high speed axial multi-stage compressor, therefore, it will aid engineers and designers in their understanding and prediction of the aerodynamic instability inception phenomena.

Author(s):  
K. M. Eveker ◽  
D. L. Gysling ◽  
C. N. Nett ◽  
O. P. Sharma

Aeroengines operate in regimes for which both rotating stall and surge impose low flow operability limits. Thus, active control strategies designed to enhance operability of aeroengines must address both rotating stall and surge as well as their interaction. In this paper, a previously developed nonlinear control strategy that achieves simultaneous active control of rotating stall and surge is applied to a high-speed 3-stage axial flow compression system with operating parameters representative of modern aeroengines. The controller is experimentally validated for 2 compressor builds and its robustness to radial distortion assessed. For actuation, the control strategy utilizes an annulus-averaged bleed valve with bandwidth on the order of the rotor frequency. For sensing, measurements of the circumferential asymmetry and annulus-averaged unsteadiness of the flow through the compressor are used. Experimental validation of simultaneous control of rotating stall and surge in a high-speed environment with minimal sensing and actuation requirements is viewed as another important step towards applying active control to enhance operability of compression systems in modem aeroengines.


Author(s):  
Z. S. Spakovszky ◽  
H. J. Weigl ◽  
J. D. Paduano ◽  
C. M. van Schalkwyk ◽  
K. L. Suder ◽  
...  

This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An annular array of 12 jet-injectors located upstream of the rotor tip was used for forced response testing and to extend the compressor stable operating range. Results for radial distortion are reported in this paper. First, the effects of radial distortion on the compressor performance and the dynamic behavior were investigated. Control laws were designed using empirical transfer function estimates determined from forced response results. The transfer functions indicated that the compressor dynamics are decoupled with radial inlet distortion, as they are for the case of undistorted inlet flow. Single-input-single-output (SISO) control strategies were therefore used for the radial distortion controller designs. Steady axisymmetric injection of 4% of the compressor mass flow resulted in a reduction in stalling mass flow of 9.7% relative to the case with inlet distortion and no injection. Use of a robust H∞ controller with unsteady non-axisymmetric injection achieved a further reduction in stalling mass flow of 7.5%, resulting in a total reduction of 17.2%.


1999 ◽  
Vol 121 (3) ◽  
pp. 510-516 ◽  
Author(s):  
Z. S. Spakovszky ◽  
H. J. Weigl ◽  
J. D. Paduano ◽  
C. M. van Schalkwyk ◽  
K. L. Suder ◽  
...  

This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An annular array of 12 jet-injectors located upstream of the rotor tip was used for forced response testing and to extend the compressor stable operating range. Results for radial distortion are reported in this paper. First, the effects of radial distortion on the compressor performance and the dynamic behavior were investigated. Control laws were designed using empirical transfer function estimates determined from forced response results. The transfer functions indicated that the compressor dynamics are decoupled with radial inlet distortion, as they are for the case of undistorted inlet flow. Single-input-single-output (SISO) control strategies were therefore used for the radial distortion controller designs. Steady axisymmetric injection of 4 percent of the compressor mass flow resulted in a reduction in stalling mass flow of 9.7 percent relative to the case with inlet distortion and no injection. Use of a robust H∞ controller with unsteady nonaxisymmetric injection achieved a further reduction in stalling mass flow of 7.5 percent, resulting in a total reduction of 17.2 percent.


1999 ◽  
Vol 121 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Z. S. Spakovszky ◽  
C. M. van Schalkwyk ◽  
H. J. Weigl ◽  
J. D. Paduano ◽  
K. L. Suder ◽  
...  

This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An array of 12 jet injectors located upstream of the compressor was used for forced response testing and feedback stabilization. Results for a circumferential total pressure distortion of about one dynamic head and a 120 deg extent (DC(60) = 0.61) are reported in this paper. Part I (Spakovszky et al., 1999) reports results for radial distortion. Control laws were designed using empirical transfer function estimates determined from forced response results. Distortion introduces coupling between the harmonics of circumferential pressure perturbations, requiring multivariable identification and control design techniques. The compressor response displayed a strong first spatial harmonic, dominated by the well-known incompressible Moore–Greitzer mode. Steady axisymmetric injection of 4 percent of the compressor mass flow resulted in a 6.2 percent reduction of stalling mass flow. Constant gain feedback, using unsteady asymmetric injection, yielded a further range extension of 9 percent. A more sophisticated robust H∞ controller allowed a reduction in stalling mass flow of 10.2 percent relative to steady injection, yielding a total reduction in stalling mass flow of 16.4 percent.


Author(s):  
Z. S. Spakovszky ◽  
C. M. van Schalkwyk ◽  
H. J. Weigl ◽  
J. D. Paduano ◽  
K. L. Suder ◽  
...  

This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An array of 12 jet injectors located upstream of the compressor was used for forced response testing and feedback stabilization. Results for a circumferential total pressure distortion of about one dynamic head and a 120° extent (DC(60) = 0.61) are reported in this paper. Part I (Spakovszky et al. (1998)) reports results for radial distortion. Control laws were designed using empirical transfer function estimates determined from forced response results. Distortion introduces coupling between the harmonics of circumferential pressure perturbations, requiring multi-variable identification and control design techniques. The compressor response displayed a strong first spatial harmonic, dominated by the well known incompressible Moore-Greitzer mode. Steady axisymmetric injection of 4% of the compressor mass flow resulted in a 6.2% reduction of stalling mass flow. Constant gain feedback, using unsteady asymmetric injection, yielded a further range extension of 9%. A more sophisticated robust controller allowed a reduction in stalling mass flow of 10.2% relative to steady injection, yielding a total reduction in stalling mass flow of 16.4%.


Author(s):  
Tsuguji Nakano ◽  
Andy Breeze-Stringfellow

A new simple engineering parameter to evaluate the stability of multi-stage axial compressors has been derived. It is based on the stability analysis for a small circumferential disturbance imposed on the steady state flow field. The analytical model assumes that the flow field is two dimensional and incompressible in the ducts between blade rows although the steady state density is permitted to change across the blade rows. The resulting stall parameter contains terms that relate to the slope of the pressure rise characteristic of the blade rows and the inertia effects of the fluid in the blade rows and ducts. The parameter leads to the classical stability criteria based on the slope of the overall total to static pressure rise coefficient in the limit where constant density and constant blade rotational speed are assumed across the compressor. The proposed stall parameter has been calculated for three different multi-stage axial flow compressors and the results indicate that the parameter has a strong correlation with the measured stability of the compressors. The good correlation with the test data demonstrates that the newly derived stall parameter captures much of the fundamental physics of instability inception in multi-stage compressors, and that it can be a good guideline for designers and engineers needing to evaluate the stability boundary of multi-stage machines.


Author(s):  
Gavin J. Hendricks ◽  
Jayant S. Sabnis ◽  
Matthew R. Feulner

A nonlinear, two-dimensional, compressible dynamic model has been developed to study rotating stall/surge inception and development in high speed, multi-stage, axial flow compressors. The flow dynamics are represented by the unsteady Euler equations, solved in each interblade row gap and inlet and exit ducts as two-dimensional domains, and in each blade passage as a one-dimensional domain. The resulting equations are solved on a computational grid. The boundary conditions between domains are represented by ideal turning coupled with empirical loss and deviation correlations. Results are presented comparing model simulations to instability inception data of an eleven stage, high pressure ratio compressor operating at part-power, and the results analyzed in the context of linear modal analysis.


Author(s):  
Jose Moreno ◽  
John Dodds ◽  
Mehdi Vahdati ◽  
Sina Stapelfeldt

Abstract Reynolds-averaged Navier-Stokes (RANS) equations are employed for aerodynamic and aeroelastic modelling in axial compressors. Their solutions are highly dependent on the turbulence models for closure. The main objective of this work is to assess the widely used Spalart-Allmaras model’s suitability for compressor flows. For this purpose, an extensive investigation of the sources of uncertainties in a high-speed multi-stage compressor rig was carried out. The grid resolution near the casing end wall, which affects the tip leakage flow and casing boundary layer, was found to have a major effect on the stability limit prediction. Refinements in this region led to a stall margin loss prediction. It was found that this loss was exclusively due to the destruction term in the SA model.


2003 ◽  
Author(s):  
Sabri Deniz

This paper considers the performance and operating range of vaned diffusers for use in high performance centrifugal compressors. An experimental and numerical investigation is performed to determine the effects of inlet flow field conditions on pressure recovery and stall onset of different type vaned diffusers, such as discrete-passage and straight-channel diffusers. Diffuser inlet flow conditions examined include Mach number, flow angle, blockage, and axial flow non-uniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. Unsteady pressure measurements showed the operating range of a compressor stage was limited by the onset of rotating stall, triggered by the loss of stability in the vaned diffuser, independent of the impeller operating point. For both diffusers investigated, loss of flow stability in the diffuser occurred at a critical value of the momentum-averaged flow angle into the diffuser. To provide additional information on diffuser flow development and to complement previous experimental work performed on straight-channel type diffuser, a computational investigation has been undertaken and important results are presented.


Author(s):  
Michael Casey ◽  
Christof Zwyssig ◽  
Chris Robinson

The specific speed and specific diameter of radial, mixed and axial flow compressors can be plotted in a Cordier diagram, and the best compressors then lie in a relatively narrow band, known as the Cordier or Balje line. This line exhibits a distinctive s-shape, and it is shown in this paper that this is due to the variation of the centrifugal effect on the pressure rise of the different compressor types. A new equation for the Cordier line in the mixed flow region based on the pressure rise coefficient is developed and calibrated with data from mixed flow pumps and ventilators. Together with other empirical relationships for the expected efficiency as a function of the specific speed this provides some useful new guidelines for the preliminary design of mixed flow compressors. These guidelines are then examined by carrying out a preliminary design of a high-speed mixed-flow micro-compressor that is analyzed using CFD and tested to justify the approach.


Sign in / Sign up

Export Citation Format

Share Document