Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions

Author(s):  
C. Mayer ◽  
J. Sangl ◽  
T. Sattelmayer ◽  
T. Lachaux ◽  
S. Bernero

Providing better fuel flexibility for future gas turbine generations is a challenge as the fuel range is expected to become significantly wider (natural gas, syngas, etc.). The technical problem is to reach a wide operational window, regarding both operational safety and low emissions. In a previous paper an approach to meet these requirements has already been presented. However, in this previous study it was difficult to exactly quantify the improvement in operational safety due to the fact that the flashback phenomena observed were not fully understood. The present continuative paper is focused on a thorough investigation of operational safety also involving the influence of pressure on flashback and the emissions of the proposed burner concept. To gain better insight in the character of the propagation and to visualize the path of the flame during its upstream motion, tests were done on an atmospheric combustion test rig providing almost complete optical access to the mixing section as well as the flame tube. OH* chemiliuminescence, HS-Mie scattering and ionization detectors were applied and undiluted H2 was used as fuel for the detailed analysis. To elaborate the influence of pressure on the stability behavior additional tests were done on a pressurized test rig using a downscaled burner. OH* chemiluminescence, flashback and lean blow out measurements were conducted in this campaign, using CH4, CH4/H2 mixtures and pure H2. The conducted experiments delivered the assets and drawbacks of the fuel injection strategy, where high axial fuel momentum was used to tune the flow field to achieve better flashback resistance.

Author(s):  
C. Mayer ◽  
J. Sangl ◽  
T. Sattelmayer ◽  
T. Lachaux ◽  
S. Bernero

Providing better fuel flexibility for future gas turbine generations is a challenge as the fuel range is expected to become significantly wider (natural gas, syngas, etc.). The technical problem is to reach a wide operational window, regarding both operational safety and low emissions. In a previous paper, an approach to meet these requirements has already been presented. However, in this previous study it was difficult to exactly quantify the improvement in operational safety due to the fact that the flashback phenomena observed were not fully understood. The present continuative paper is focused on a thorough investigation of operational safety also involving the influence of pressure on flashback and the emissions of the proposed burner concept. To gain better insight into the character of the propagation and to visualize the path of the flame during its upstream motion, tests were done on an atmospheric combustion test rig providing almost complete optical access to the mixing section as well as the flame tube. OH* chemiluminescence, HS-Mie scattering and ionization detectors were applied and undiluted H2 was used as fuel for the detailed analysis. To elaborate on the influence of pressure on the stability behavior, additional tests were conducted on a pressurized test rig using a downscaled burner. OH* chemiluminescence, flashback and lean blow out measurements were conducted in this campaign, using CH4, CH4/H2 mixtures and pure H2. The conducted experiments delivered the assets and drawbacks of the fuel injection strategy, where high axial fuel momentum was used to tune the flow field to achieve better flashback resistance.


Author(s):  
Thomas Scarinci ◽  
John L. Halpin

Thermoacoustic resonance is a difficult technical problem that is experienced by almost all lean-premixed combustors. The Industrial Trent combustor is a novel dry-low-emissions (DLE) combustor design, which incorporates three stages of lean premixed fuel injection in series. The three stages in series allow independent control of two stages — the third stage receives the balance of fuel to maintain the desired power level — at all power conditions. Thus, primary zone and secondary zone temperatures can be independently controlled. This paper examines how the flexibility offered by a 3-stage lean premixed combustion system permits the implementation of a successful combustion noise avoidance strategy at all power conditions and at all ambient conditions. This is because at a given engine condition (power level and day temperature) a characteristic “noise map” can be generated on the engine, independently of the engine running condition. The variable distribution of heat release along the length of the combustor provides an effective mechanism to control the amplitude of longitudinal resonance modes of the combustor. This approach has allowed the Industrial Trent combustion engineers to thoroughly “map out” all longitudinal combustor acoustic modes and design a fuel schedule that can navigate around regions of combustor thermoacoustic resonance. Noise mapping results are presented in detail, together with the development of noise prediction methods (frequency and amplitude) that have allowed the noise characteristics of the engine to be established over the entire operating envelope of the engine.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Shufan Wang ◽  
Zhihui Ma

An ecoepidemiological system with prey refuges and disease in prey is proposed. Bilinear incidence and Holling III functional response are used to model the contact process and the predation process, respectively. We will study the stability behavior of the basic system from a local to a global perspective. Permanence of the considered system is also investigated.


Author(s):  
Jan-Simon Schäpel ◽  
Rudibert King ◽  
Fatma Yücel ◽  
Fabian Völzke ◽  
Christian Oliver Paschereit ◽  
...  

Approximate constant volume combustion (aCVC) is a promising way to optimize the combustion process in a gas turbine, which would exceed the gain in efficiency resulting from optimizing other components significantly. This work deals with a recently proposed approach: shockless explosion combustion (SEC). Compared to already known concepts, such as pulsed detonation combustion (PDC), it overcomes several disadvantages, e.g., sharp pressure transitions and entropy generation due to shock waves. For an SEC, accurate fuel stratification is required to achieve a quasi-homogeneous auto-ignition. In an atmospheric test rig quasi-homogeneous ignitions were achieved previously in non-resonant operation. To achieve a resonant operation, which goes along with a higher firing frequency, lower ignition and injection times are required. For this purpose, an array of solenoid valves was designed to allow for highly dynamic operation within short filling time spans. Using a novel mixed-integer control approach, these solenoid valves were actuated such that a desired fuel profile was generated. In this paper, the mentioned test rig was used for non-reacting fuel measurements to compare the quality of the axial fuel stratification achieved by using the valve array with the one achieved by using a slower proportional valve. In the experimental investigation the actuation with the valve array proved to adjust the required fuel stratification with the same quality as the actuation with the proportional valve, which was already successfully applied to the reactive set-up. Hence, the mixed-integer controlled valve array is considered a useful concept for upcoming resonant reactive SEC investigations.


2020 ◽  
pp. 146808742091471
Author(s):  
Feng Li ◽  
Chia-fon Lee ◽  
Ziman Wang ◽  
Yiqiang Pei ◽  
Guoxiang Lu

Ducted fuel injection spray is a new technology for reducing soot formation in heavy-duty diesel engines. In this work, the ducted fuel injection spray characteristics with different duct inner diameters and different standoff distances were investigated and compared with free spray. Duct inner diameter ranged from 1.5 to 4 mm, and standoff distance varied between 0.9 and 4.9 mm. Mie-scattering optical technique was used to characterize spray characteristics under various injection pressures in a constant-volume spray chamber. Ambient gas pressure of up to 6 MPa when spraying. The results showed that ducted fuel injection spray with smaller duct has better spray diffusion compared to those of ducted fuel injection sprays with larger ducts and free spray from the perspectives of spray tip penetration, spray cone angle and spray area. Increasing standoff distance could increase spray velocity. Ducted fuel injection spray with smaller duct formed a mushroom-shaped head and large-scale vortex flow close to the duct outlet. All the advantages of ducted fuel injection spray with smaller duct are interpreted as evidence of improving fuel–gas mixing quality significantly.


2019 ◽  
Vol 14 ◽  
pp. 155892501988640
Author(s):  
Xiao-Shun Zhao ◽  
He Jia ◽  
Zhihong Sun ◽  
Li Yu

At present, most space inflatable structures are composed of flexible inflatable fabrics with complex undevelopable surfaces. It is difficult to establish a multi-dimensional folding model for this type of structure. To solve this key technical problem, the motion folding method is proposed in this study. First, a finite element model with an original three-dimensional surface was flattened with a fluid structure interaction algorithm. Second, the flattened surface was folded based on the prescribed motion of the node groups, and the final folding model was obtained. The fold modeling process of this methodology was consistent with the actual folding processes. Because the mapping relationship between the original finite element model and the final folding model was unchanged, the initial stress was used to modify the model errors during folding process of motion folding method. The folding model of an inflatable aerodynamic decelerator, which could not be established using existing folding methods, was established by using motion folding method. The folding model of the inflatable aerodynamic decelerator showed that the motion folding method could achieve multi-dimensional folding and a high spatial compression rate. The stability and regularity of the inflatable aerodynamic decelerator numerical inflation process and the consistency of the inflated and design shapes indicated the reliability, applicability, and feasibility of the motion folding method. The study results could provide a reference for modeling complex inflatable fabrics and promote the numerical study of inflatable fabrics.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdel-Haleem Abdel-Aty ◽  
Mostafa M. A. Khater ◽  
Dumitru Baleanu ◽  
E. M. Khalil ◽  
Jamel Bouslimi ◽  
...  

Abstract The dynamical attitude of the transmission for the nerve impulses of a nervous system, which is mathematically formulated by the Atangana–Baleanu (AB) time-fractional FitzHugh–Nagumo (FN) equation, is computationally and numerically investigated via two distinct schemes. These schemes are the improved Riccati expansion method and B-spline schemes. Additionally, the stability behavior of the analytical evaluated solutions is illustrated based on the characteristics of the Hamiltonian to explain the applicability of them in the model’s applications. Also, the physical and dynamical behaviors of the gained solutions are clarified by sketching them in three different types of plots. The practical side and power of applied methods are shown to explain their ability to use on many other nonlinear evaluation equations.


2011 ◽  
Vol 71-78 ◽  
pp. 3760-3763
Author(s):  
Xing Wang

This paper carries out stability analysis on plate-cone reticulated shell considering geometrical nonlinearity of cooperating work between plates and members. In this paper, stability behavior of different kinds of plate-cone reticulated shell considering geometrical nonlinearity is analyzed by using the software ANSYS, tracking complete process balance path for load-displacement by using arc-length method, the several problems of plate-cone reticulated shell are studied, such as destruction mechanism, structural ductility, ultimate bearing capacity and strength reserve, some important conclusions are obtained. After analyzing the stability behavior of double-layer reticulated shell by ANSYS and comparing with plate-cone reticulated shell, it is proved that plate-cone reticulated shell is more advantageous than double-layer reticulated shell in the aspect of stability behavior.


Sign in / Sign up

Export Citation Format

Share Document