Numerical Optimization of a Steam Turbine Control Stage by Flowpath Profiling Using Evolutionary Algorithm

Author(s):  
Nils Moser ◽  
Rene´ Volkert ◽  
Franz Joos

The subject of this paper is the optimization of a steam turbine impulse wheel control stage by flow path profiling of the shroud. The investigated control stage is derived from an existing industrial steam turbine design. The shroud contour is varied in radial direction within specified restrictions by an evolutionary algorithm. The algorithm is directly connected to a mesh generator and a CFD solver. The optimization goal is the reduction of the total pressure loss over the guide vanes. The geometry of the rotor blade has been retained unchanged within the presented investigations. The flow field of the varied stage is compared with the baseline geometry. The optimum candidates are further investigated with CFD simulations for different operating point scenarios. Numerical results show that the axisymetric flowpath profiling of the shroud has a considerable effect on the loss behavior of the whole stage over a wide range of pressure ratios. Due to flowpath profiling the boundary layer in the nozzle is significantly affected which results in a more uniformly shaped exit flow angle profile over the nozzle span and a significant reduction of the global secondary flow effects in the guide vanes. Both observations have a positive influence on the flow conditions to the subsequent rotor blade.

Author(s):  
Koichi Yonezawa ◽  
Tomoki Kagayama ◽  
Masahiro Takayasu ◽  
Genki Nakai ◽  
Kazuyasu Sugiyama ◽  
...  

Deteriorations of nozzle guide vanes (NGVs) and rotor blades of a steam turbine through a long-time operation usually decrease a thermal efficiency and a power output of the turbine. In this study, influences of blade deformations due to erosion are discussed. Experiments were carried out in order to validate numerical simulations using a commercial software ANSYS-cfx. The numerical results showed acceptable agreements with experimental results. Variation of flow characteristics in the first stage of the intermediate pressure steam turbine is examined using numerical simulations. Geometries of the NGVs and the rotor blades are measured using a 3D scanner during an overhaul. The old NGVs and the rotor blades, which were used in operation, were eroded through the operation. The erosion of the NGVs leaded to increase of the throat area of the nozzle. The numerical results showed that rotor inlet velocity through the old NGVs became smaller and the flow angle of attack to the rotor blade leading edge became smaller. Consequently, the rotor power decreased significantly. Influences of the flow angle of at the rotor inlet were examined by parametric calculations and results showed that the angle of attack was an important parameter to determine the rotor performance. In addition, the influence of the deformation of the rotor blade was examined. The results showed that the degradation of the rotor performance decreased in accordance with the decrease of blade surface area.


Author(s):  
Budimir Rosic ◽  
Cosimo Maria Mazzoni ◽  
Zoe Bignell

Feed-heating in steam turbines, the use of steam extracted from the turbine to heat the feed-water, is known to raise the plant efficiency and so is included in most steam turbine power plant designs. The steam is extracted through an extraction slot that runs around the casing downstream of a rotor blade row. The slot is connected to a plenum, which runs around the outside of the turbine annulus. Steam flows to the feed-heaters through a pipe connected usually to the bottom of the plenum. The steam extraction is driven by a circumferentially nonuniform pressure gradient in the plenum. This causes the mass flow rate of steam extracted to vary circumferentially, which affects the main passage flow downstream of the extraction point. The flow in the extraction plenum and the influence of the steam extraction on the mainstream aerodynamics is analyzed numerically in this paper. A complete annulus with the extraction slot and plenum together with the downstream stator and rotor blade rows is modeled in this study. The results reveal a highly nonuniform steam extraction around the annulus with the highest extraction rates from the bottom nearest the extraction pipe and the lowest at the top of the annulus. This difference in extraction rates modifies the flow angle and loss circumferential distribution downstream of the stator blade row. This study finds out that the distribution of steam extraction around the annulus and its influence on the main passage flow could be greatly improved by changing the shape and increasing the volume of the extraction slot and plenum.


Author(s):  
Nils Moser ◽  
Peter Steinhoff ◽  
Franz Joos

The numerically and experimentally investigated industrial steam turbine control stage is derived from a real design. Due to the production process and costs of the guide vanes for control stages of steam turbines the flowpath profiling is rotationally symmetric. However the combination of the two-dimensional shroud contour and the flow deflection in the guide vane results in a fully three-dimensional end wall contour having a strong influence on the secondary flow features in the turbine control stage. To obtain an improved profile for the nozzle shroud the reduction of the total pressure loss over the guide vanes is taken as an optimization criterion. The three-dimensional contour generates a diffuser flowpath between the suction and the pressure side of two guide vanes perpendicular to the main flow direction. This diffuser geometry affects the pressure distribution over the guide vane and therefore the formation mechanisms of secondary flows. For the experimental and numerical investigations a baseline shroud design and two additional profiled contours are analyzed in detail. The control stage test rig is operated with air and is capable to represent a wide range of operating conditions. The measurements show a considerable increase of the stage efficiency and power output. The effect of the flowpath profiling on the pressure distribution over the guide vane is clearly proved.


Author(s):  
Tobias J. Kalkkuhl ◽  
David Engelmann ◽  
Ulrich Harbecke ◽  
Ronald Mailach

A partially admitted control stage is a typical feature of an industrial steam turbine. Its purpose is to provide efficient part-load operation and to reduce losses caused by an adverse blade height to tip gap ratio by closing segmental arcs of the inlet annulus. On the other hand partial admission naturally causes circumferential nonuniformity of the flow, because the flow enters the control stage rotor over only a portion of the annulus. This induces not only unsteady blade forces but also additional losses in comparison to a full-admission turbine. So the advantage of partial admission is reduced. In order to analyze partial admission flow effects a 3D CFD model of an industrial steam turbine needs to be developed. It consists of three parts: i) The nozzle groups covering only a portion of the annulus and the rotor of the impulse-type control stage, ii) a cross-over channel directing the flow to a reduced diameter, and iii) the downstream reaction-type turbine stages. The results show considerable flow nonuniformity downstream of the cross-over channel which affects performance of the adjacent full-admission stages. Different operating points of the turbine are investigated. Circumferential periodicity is utilized to minimize computational cost of the simulation. Customary guidelines to CFD-simulation are taken into account and simulation parameters are carefully checked for their influence on the results: turbulence models, meshing parameters and boundary conditions are varied. The influence of gap flow is checked. The results are finally compared to experimental data to check simulation quality.


Author(s):  
Juri Bellucci ◽  
Federica Sazzini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
...  

This paper focuses on the use of the CFD for improving a steam turbine preliminary design tool. Three-dimensional RANS analyses were carried out in order to independently investigate the effects of profile, secondary flow and tip clearance losses, on the efficiency of two high-pressure steam turbine stages. The parametric study included geometrical features such as stagger angle, aspect ratio and radius ratio, and was conducted for a wide range of flow coefficients to cover the whole operating envelope. The results are reported in terms of stage performance curves, enthalpy loss coefficients and span-wise distribution of the blade-to-blade exit angles. A detailed discussion of these results is provided in order to highlight the different aerodynamic behavior of the two geometries. Once the analysis was concluded, the tuning of a preliminary steam turbine design tool was carried out, based on a correlative approach. Due to the lack of a large set of experimental data, the information obtained from the post-processing of the CFD computations were applied to update the current correlations, in order to improve the accuracy of the efficiency evaluation for both stages. Finally, the predictions of the tuned preliminary design tool were compared with the results of the CFD computations, in terms of stage efficiency, in a broad range of flow coefficients and in different real machine layouts.


Author(s):  
Nobuhiko Fukuda ◽  
Satoshi Someya ◽  
Koji Okamoto

It is thought that the pressure fluctuation can occur due to the interaction between flow through guide vanes and flow into runner blades, resulting in a vibration of turbine and a blade cracking, in a hydraulic turbine operated in a wide range for flexible power demand. High accurate velocity measurement with high time/spatial resolution can help to clarify the mechanism of the interaction and to provide good experimental data for the validation of numerical procedure. So the aim of present study is to estimate the unstable velocity field quantitatively in the area between guide vanes and runner blades, using high time-resolved particle image velocimetry (PIV). Two types of velocity measurements were carried out, i.e., phase-locked measurement and high time sequential velocity measurement, in a pump-turbine model with 20 guide vanes and 6 runner blades. The characteristic of the flow field varied corresponding to the operating conditions such as flow rate and rotational speed. Opening angles of guide vanes were kept uniform. A clockwise vortex was generated at inside of the runner blade under smaller rotational speed. A counterclockwise vortex was separated at the backside of the runner blade under higher rotational speed. At any operating conditions, the velocity between guide vanes and runner blades oscillated periodically at the blade passing frequency.


Author(s):  
Ranjan Saha ◽  
Jens Fridh ◽  
Torsten Fransson ◽  
Boris I. Mamaev ◽  
Mats Annerfeldt

An experimental study of the hub leading edge contouring using fillets is performed in an annular sector cascade to observe the influence of secondary flows and aerodynamic losses. The investigated vane is a three dimensional gas turbine guide vane (geometrically similar) with a mid-span aspect ratio of 0.46. The measurements are carried out on the leading edge fillet and baseline cases using pneumatic probes. Significant precautions have been taken to increase the accuracy of the measurements. The investigations are performed for a wide range of operating exit Mach numbers from 0.5 to 0.9 at a design inlet flow angle of 90°. Data presented include the loading, fields of total pressures, exit flow angles, radial flow angles, as well as profile and secondary losses. The vane has a small profile loss of approximately 2.5% and secondary loss of about 1.1%. Contour plots of vorticity distributions and velocity vectors indicate there is a small influence of the vortex-structure in endwall regions when the leading edge fillet is used. Compared to the baseline case the loss for the filleted case is lower up to 13% of span and higher from 13% to 20% of the span for a reference condition with Mach no. of 0.9. For the filleted case, there is a small increase of turning up to 15% of the span and then a small decrease up to 35% of the span. Hence, there are no significant influences on the losses and turning for the filleted case. Results lead to the conclusion that one cannot expect a noticeable effect of leading edge contouring on the aerodynamic efficiency for the investigated 1st stage vane of a modern gas turbine.


2021 ◽  
pp. 1-54
Author(s):  
Subhra Shankha Koley ◽  
Huang Chen ◽  
Ayush Saraswat ◽  
Joseph Katz

Abstract This experimental study characterizes the interactions of axial casing grooves with the flow in the tip region of an axial turbomachine. The tests involve grooves with the same inlet overlapping with the rotor blade leading edge, but with different exit directions located upstream. Among them, U grooves, whose circumferential outflow opposes the blade motion, achieve a 60% reduction in stall flowrate, but degrade the efficiency around the best efficiency point (BEP) by 2%. The S grooves, whose outlets are parallel to the blade rotation, improve the stall flowrate by only 36%, but do not degrade the BEP performance. To elucidate the mechanisms involved, stereo-PIV measurements covering the tip region and interior of grooves are performed in a refractive index matched facility. At low flow rates, the inflow into both grooves, which peaks when they are aligned with the blade pressure side, rolls up into a large vortex that lingers within the groove. By design, the outflow from S grooves is circumferentially positive. For the U grooves, fast circumferentially negative outflow peaks at the base of each groove, causing substantial periodic variations in the flow angle near the blade leading edge. At BEP, interactions with both grooves become milder, and most of the tip leakage vortex remains in the passage. Interactions with the S grooves are limited hence they do not degrade the efficiency. In contrast, the inflow into and outflow from the U grooves reverses direction, causing entrainment of secondary flows, which likely contribute to the reduced BEP efficiency.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Luying Zhang ◽  
Francesco Congiu ◽  
Xiaopeng Gan ◽  
David Karunakara

The performance of the radial diffuser of a low pressure (LP) steam turbine is important to the power output of the turbine. A reliable and robust prediction and optimization tool is desirable in industry for preliminary design and performance evaluation. This is particularly critical during the tendering phase of retrofit projects, which typically cover a wide range of original equipment manufacturer and other original equipment manufacturers designs. This work describes a fast and reliable numerical approach for the simulation of flow in the last stage and radial diffuser coupled with the exhaust hood. The numerical solver is based on a streamline curvature throughflow method and a geometry-modification treatment has been developed for off-design conditions, at which large-scale flow separation may occur in the diffuser domain causing convergence difficulty. To take into account the effect of tip leakage jet flow, a boundary layer solver is coupled with the throughflow calculation to predict flow separation on the diffuser lip. The performance of the downstream exhaust hood is modeled by a hood loss model (HLM) that accounts for various loss generations along the flow paths. Furthermore, the solver is implemented in an optimization process. Both the diffuser lip and hub profiles can be quickly optimized, together or separately, to improve the design in the early tender phase. 3D computational fluid dynamics (CFD) simulations are used to validate the solver and the optimization process. The results show that the current method predicts the diffuser/exhaust hood performance within good agreement with the CFD calculation and the optimized diffuser profile improves the diffuser recovery over the datum design. The tool provides General Electric the capability to rapidly optimize and customize retrofit diffusers for each customer considering different constraints.


Sign in / Sign up

Export Citation Format

Share Document