scholarly journals Numerical Characterization of Pressure Drop Across the Manifold of Turbine Casing Cooling System

Author(s):  
Riccardo Da Soghe ◽  
Antonio Andreini

Array of jets is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooling systems of turbine blades and vanes or in the turbine blade tip clearances control of large aeroengines. In order to correctly evaluate the impinging jet mass flow rate, the characterization of holes discharge coefficient is a compulsory activity. In a previous work the authors have performed an aerodynamic analysis of different arrays of jets for active clearance control; the aim was the definition of a correlation for the discharge coefficient (Cd) of a generic hole of the array. The developed empirical correlation expresses the Cd of each hole as a function of the ratio between the hole and the manifold mass velocity and the local value of the pressure ratio. In its original form, the correlation does not take in to account the effect of the hole length to diameter ratio (t/d) so, in the present contribution, the authors report a study with the aim of evaluating the influence of such parameter on the discharge coefficient distribution. The data were taken from a set of CFD RANS simulations, in which the behaviour of the cooling system was investigated over a wide range of fluid-dynamics conditions (Pressure-Ratio = 1.01–1.6, t/d = 0.25–3). To point out the reliability of the CFD analysis, some comparisons with experimental data were drawn. An in depth analysis of the numerical data set has led to an improved correlation with a new term function of the hole length to diameter ratio.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Riccardo Da Soghe ◽  
Antonio Andreini

An array of jets is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooling systems of turbine blades and vanes or in the turbine blade tip clearances control of large aero-engines. In order to correctly evaluate the impinging jet mass flow rate, the characterization of holes discharge coefficient is a compulsory activity. In a previous work, the authors have performed an aerodynamic analysis of different arrays of jets for active clearance control; the aim was the definition of a correlation for the discharge coefficient (Cd) of a generic hole of the array. The developed empirical correlation expresses the (Cd) of each hole as a function of the ratio between the hole and the manifold mass velocity and the local value of the pressure ratio. In its original form, the correlation does not take in to account the effect of the hole length to diameter ratio (t/d) so, in the present contribution, the authors report a study with the aim of evaluating the influence of such parameter on the discharge coefficient distribution. The data were taken from a set of CFD RANS simulations, in which the behavior of the cooling system was investigated over a wide range of fluid-dynamics conditions (pressure-ratio = 1.01–1.6, t/d = 0.25–3). To point out the reliability of the CFD analysis, some comparisons with experimental data were drawn. An in depth analysis of the numerical data set has led to an improved correlation with a new term function of the hole length to diameter ratio.


Author(s):  
Antonio Andreini ◽  
Riccardo Da Soghe

Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In order to correctly evaluate the impinging jet mass flow rate, the characterization of holes discharge coefficient is a compulsory activity. In this work, an aerodynamic analysis of jet arrays for active clearance control was performed; the aim was the definition of a correlation for the discharge coefficient (Cd) of a generic hole of the array. The data were taken from a set of CFD RANS simulations, in which the behavior of the cooling system was investigated over a wide range of fluid-dynamics conditions. Furthermore, several different holes arrangements were investigated in significant detail, with the aim of evaluating the influence of the hole spacing on the discharge coefficient distribution. Tests were conducted by varying the jet Reynolds number in a wide range of effective engine operative conditions (Re = 2000-12,000, Pressure- Ratio = 1.01-1.6). To point out the reliability of the CFD analysis, some comparisons with experimental data, measured at the Department of Energy Engineering of the University of Florence, were drawn. An in-depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the mass velocity ratio of hole and feeding pipe: the dependence of the discharge coefficients from this parameter is roughly logarithmic.


Author(s):  
Antonio Andreini ◽  
Riccardo Da Soghe

Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In order to correctly evaluate the impinging jet mass flow rate, the characterization of holes discharge coefficient is a compulsory activity. In this work an aerodynamic analysis of jet arrays for active clearance control was performed; the aim was the definition of a correlation for the discharge coefficient (Cd) of a generic hole of the array. The data were taken from a set of CFD RANS simulations, in which the behaviour of the cooling system was investigated over a wide range of fluid-dynamics conditions. More in detail, several different holes arrangements were investigated with the aim of evaluating the influence of the hole spacing on the discharge coefficient distribution. Tests were conducted by varying the jet Reynolds number in a wide range of effective engine operative conditions (Re = 2000–12000, Pressure-Ratio = 1.01–1.6). To point out the reliability of the CFD analysis, some comparisons with experimental data, measured at the “Department of Energy Engineering” of the University of Florence, were drawn. An in depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the mass velocity ratio of hole and feeding pipe: the dependence of the discharge coefficients from this parameter is roughly logarithmic.


Author(s):  
A. Andreini ◽  
A. Bonini ◽  
G. Caciolli ◽  
B. Facchini ◽  
S. Taddei

Due to the stringent cooling requirements of novel aero-engines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work, an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data were taken from a set of CFD RANS (Reynolds-averaged Navier-Stokes) simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo/fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken into account, making it possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: The dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one-dimensional thermo/fluid network solver, and its results were compared with CFD data. An overall good agreement of pressure and mass flow rate distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: Within the validity range of pressure ratios in which the correlation is defined (>1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction.


Author(s):  
A. Andreini ◽  
A. Bonini ◽  
G. Caciolli ◽  
B. Facchini ◽  
S. Taddei

Due to the stringent cooling requirements of novel aeroengines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data was taken from a set of CFD RANS simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken in account, making possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: the dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one dimensional thermo-fluid network solver and its results were compared with CFD data. An overall good agreement of pressure and mass flow rates distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates, due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: within the validity range of pressure ratio in which the correlation is defined (> 1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668726 ◽  
Author(s):  
Fan Yang ◽  
Gangyan Li ◽  
Dawei Hu ◽  
Toshiharu Kagawa

In this study, we proposed a method for calculating the sonic conductance of a short-tube orifice. First, we derived a formula for calculating the sonic conductance based on a continuity equation, a momentum equation and the definition of flow-rate characteristics. The flow-rate characteristics of different orifices were then measured using the upstream constant-pressure test method in ISO 6358. Based on these test data, the theoretical formula was simplified using the least squares fitting method, the accuracy of which was verified experimentally. Finally, the effects of the diameter ratio, the length-to-diameter ratio and the critical pressure ratio were analysed with reference to engineering applications, and a simplified formula was derived. We conclude that the influence of the diameter ratio is greater than that of the length-to-diameter ratio. When the length-to-diameter ratio is <5, its effect can be neglected. The critical pressure ratio has little effect on the sonic conductance of a short-tube orifice, and it can be set to 0.5 when calculating the sonic conductance in engineering applications. The formula proposed in this study is highly accurate with a mean error of <3%.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash (VA) therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical high pressure (HP) turbine blade metal temperatures (1163 K to 1293 K) and coolant inlet temperatures (800 K to 900 K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter (FP), which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterize the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase computational fluid dynamics (CFD) model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modeled, and these results are used to help explain the behavior observed.


Author(s):  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Raffaele L. Amalfi ◽  
Filippo Cataldo

Abstract Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.


2004 ◽  
Vol 126 (4) ◽  
pp. 803-808 ◽  
Author(s):  
M. Dittmann ◽  
K. Dullenkopf ◽  
S. Wittig

The secondary air system of modern gas turbine engines consists of numerous stationary or rotating passages to transport the cooling air, taken from the compressor, to thermally high loaded components that need cooling. Thereby the cooling air has to be metered by orifices to control the mass flow rate. Especially the discharge behavior of rotating holes may vary in a wide range depending on the actual geometry and the operating point. The exact knowledge of the discharge coefficients of these orifices is essential during the design process in order to guarantee a well adapted distribution of the cooling air inside the engine. This is crucial not only for a safe and efficient operation but also fundamental to predict the component’s life and reliability. In this paper two different methods to correlate discharge coefficients of rotating orifices are described and compared, both in the stationary and rotating frame of reference. The benefits of defining the discharge coefficient in the relative frame of reference will be pointed out. Measurements were conducted for two different length-to-diameter ratios of the orifices with varying inlet geometries. The pressure ratio across the rotor was varied for rotational Reynolds numbers up to ReΦ=8.6×105. The results demonstrate the strong influence of rotation on the discharge coefficient. An analysis of the complete data shows significant optimizing capabilities depending on the orifice geometry.


Author(s):  
M. Dittmann ◽  
K. Dullenkopf ◽  
S. Wittig

The secondary air system of modern gas turbine engines consists of numerous stationary or rotating passages to transport the cooling air, taken from the compressor, to thermally high loaded components that need cooling. Thereby the cooling air has to be metered by orifices to control the mass flow rate. Especially the discharge behavior of rotating holes may vary in a wide range depending on the actual geometry and the operating point. The exact knowledge of the discharge coefficients of these orifices is essential during the design process in order to guarantee a well adapted distribution of the cooling air inside the engine. This is crucial not only for a safe and efficient operation but also fundamental to predict the component’s life and reliability. In this paper two different methods to correlate discharge coefficients of rotating orifices are described and compared, both in the stationary and rotating frame of reference. The benefits of defining the discharge coefficient in the relative frame of reference will be pointed out. Measurements were conducted for two different length-to-diameter ratios of the orifices with varying inlet geometries. The pressure ratio across the rotor was varied for rotational Reynolds numbers up to Reφ = 8:6 × 105. The results demonstrate the strong influence of rotation on the discharge coefficient. An analysis of the complete data shows significant optimising capabilities depending on the orifice geometry.


Sign in / Sign up

Export Citation Format

Share Document