Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications: Part II—Improvement of External Flow Modeling

Author(s):  
A. Andreini ◽  
A. Bonini ◽  
R. Da Soghe ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists in a decoupled analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The second part of this work is focused on the improvement of external heat loads prediction through the use of a full featured geometry of the blade. In particular a detailed representation of the rim seal is accounted for as well as the actual geometry of the squealer tip. A new set of conjugate results is compared with temperature obtained by metallographic analysis, pointing out the relevant effect of the actual endwall contour on the metal temperature distribution at low spans of the blade.

Author(s):  
A. Bonini ◽  
A. Andreini ◽  
C. Carcasci ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists of a conjugate heat transfer analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The first part of this work is focused on the description of the procedures in terms of set up of the equivalent fluid network model of internal cooling system and its tuning through experimental measurements of blade flow function. A first computation of blade metal temperature was obtained by coupling with CFD computations carried out on a de-featured geometry of the blade. Achieved results are compared with the data of a metallographic analysis performed on a blade operated on an actual engine. Some discrepancies are observed between datasets, suggesting the necessity to improve the models, mainly from the CFD side.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of HPT (High Pressure Turbine) cooled components of the BHGE NovaLT™ 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D CFD analysis and the heat conduction in the solid is carried out through a 3D FEM solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine, in order to validate the presented procedure.


Author(s):  
Kazuhiro Tsukamoto ◽  
Yasuhiro Horiuchi ◽  
Kazuyuki Sugimura ◽  
Shinichi Higuchi

Conjugate Heat Transfer (CHT) was analyzed in a first stage rotor blade in an actual gas turbine. The main objectives of this research were to simulate and validate improvements to the accuracy of predicting temperature on the surfaces of rotor blades in a gas turbine and compare these with experimental results. This simulation was carried out under similar conditions to those during gas turbine operation. Computational grids were generated based on CAD data obtained from the rotor blades with fully resolved rib turbulators and pin fins for both fluid and solid domains during CHT analysis. A tetrahedral mesh with prism layers was used and the y+ of the first mesh adjacent to the wall was kept at less than 1.0 over the whole surface. Thermal barrier coating was modeled by adding thermal resistance at the fluid-solid interfaces. Inlet boundary conditions for the external- and internal-gas-flow regions were defined based on one-dimensional analysis and measured results. Steady Reynolds-averaged Navier-Stokes simulation was carried out using the Shear Stress Transport (SST) turbulence model. The simulated results were compared with measured data obtained from a pyrometer and thermocouple. The temperature distributions predicted from CHT analysis agreed with those obtained from an experiment near the leading edge of the rotor blades. However, the temperature distribution at the center of the pressure side had a difference of 50 K with that obtained from the experimental data. The heat transfer coefficients on the surfaces of the blades were almost equal to those on the pressure side. Thus, we considered that the internal cooling flows contributed more to temperature distributions on the surfaces of the blades rather than the external gas flows. The main stream in the internal cooling flow passages leaned toward one side of the walls and the temperatures on this side became lower than those obtained from the experimental results. Therefore, we suspect CHT analysis underestimated the mixing effect generated by the rib turbulators. It is important to solve the complex flow phenomena in internal cooling passages to better predict the accuracy of temperature distributions on the surfaces of blades.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2096
Author(s):  
Joon Ahn ◽  
Jeong Chul Song ◽  
Joon Sik Lee

Large eddy simulations are performed to analyze the conjugate heat transfer of turbulent flow in a ribbed channel with a heat-conducting solid wall. An immersed boundary method (IBM) is used to determine the effect of heat transfer in the solid region on that in the fluid region in a unitary computational domain. To satisfy the continuity of the heat flux at the solid–fluid interface, effective conductivity is introduced. By applying the IBM, it is possible to fully couple the convection on the fluid side and the conduction inside the solid and use a dynamic subgrid scale model in a Cartesian grid. The blockage ratio (e/H) is set at 0.1, which is typical for gas turbine blades. Through conjugate heat transfer analysis, it is confirmed that the heat transfer peak in front of the rib occurs because of the impinging of the reattached flow and not the influence of the thermal boundary condition. When the rib turbulator acts as a fin, its efficiency and effectiveness are predicted to be 98.9% and 8.32, respectively. When considering conjugate heat transfer, the total heat transfer rate is reduced by 3% compared with that of the isothermal wall. The typical Biot number at the internal cooling passage of a gas turbine is <0.1, and the use of the rib height as the characteristic length better represents the heat transfer of the rib.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Sign in / Sign up

Export Citation Format

Share Document