Validation of Surface Pressure Predictions for Nozzle Airfoil and Endwall Film Cooling Design Using Transonic Cascade Measurements

Author(s):  
Jason E. Dees ◽  
James A. Tallman ◽  
Michael A. Heminger ◽  
Daniel Wilde

This study compares surface pressure measurements and predictions for a high pressure turbine first-stage nozzle vane. The surface pressure measurements were taken in a 3D annular cascade, consisting of four airfoils and five passages. The cascade was uncooled, axisymmetric at both inner and outer endwalls, and reproduced the design intent Reynolds and Mach numbers of the real engine component. Static pressure measurements were taken along the airfoil profile at 15, 50, and 85% span, with duplicate midspan measurements across the four airfoils for assessing the tangential periodicity of the flow. Static pressure measurements were also taken on the inner and outer endwall surfaces of the center airfoil passage, with 40 measurement points uniformly distributed over each endwall. Three methods of surface pressure prediction were compared with the data: (1) a 2D inviscid CFD solution of a single airfoil passage at fixed spanwise locations, (2) a 3D RANS CFD solution of a single airfoil passage, and (3) a 3D RANS CFD solution of the full five-passage cascade domain. Both of the single-passage solutions assumed flowfield periodicity in the tangential direction and compared favorably to the center passage airfoil data. This finding suggested that the cascade center passage was sufficiently representative of the full-annulus turbomachine environment and validated the cascade for further experimental studies. The adjacent airfoil pressure measurements quantified the passage-to-passage variation in the cascade flowfield, and the 3D full-cascade CFD compared favorably with the peripheral airfoil data. The full-cascade CFD also compared favorably with the data on both endwalls: with an average and maximum deviation of 0.5 and 2%, respectively. These findings provide confidence in the 3D CFD methods for use in determining local flow rates from cooling/leakage geometry, and serve as an important first step toward validating the methods for real-engine blockage effects like coolant and endwall contouring.

1987 ◽  
Vol 109 (1) ◽  
pp. 48-54 ◽  
Author(s):  
M. Th. Sideris ◽  
R. A. Van den Braembussche

Detailed velocity measurements, using Laser Doppler Anemometry (LDA) and static pressure measurements in the vane/ess diffuser of a centrifugal compressor, are presented. They show the relation between the circumferential variation of the pressure and the local flow in the diffuser and at the impeller exit. Theoretical calculations using an impeller-diffuser interaction model have been made. A comparison between the theoretical results and experimental data allows an evaluation of the possibilities and shortcomings of such a calculation. It also illustrates the mechanisms by which the variation of the impeller outlet velocity is defined.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
C. W. Haldeman ◽  
R. M. Mathison ◽  
M. G. Dunn ◽  
S. A. Southworth ◽  
J. W. Harral ◽  
...  

This paper presents measurements and the companion computational fluid dynamics (CFD) predictions for a fully cooled, high-work single-stage HP turbine operating in a short-duration blowdown rig. Part I of this paper (Haldeman, C. W., Mathison, R. M., Dunn, M. G., Southworth, S. A., Harral, J. W., and Heltland, G., 2008, ASME J. Turbomach., 130(2), p. 021015) presented the experimental approach, and Part II focuses on the results of the measurements and demonstrates how these results compare to predictions made using the Numeca FINE/Turbo CFD package. The measurements are presented in both time-averaged and time-accurate formats. The results include the heat transfer at multiple spans on the vane, blade, and rotor shroud as well as flow path measurements of total temperature and total pressure. Surface pressure measurements are available on the vane at midspan, and on the blade at 50% and 90% spans as well as the rotor shroud. In addition, temperature and pressure measurements obtained inside the coolant cavities of both the vanes and blades are presented. Time-averaged values for the surface pressure on the vane and blade are compared to steady CFD predictions. Additional comparisons will be made between the heat transfer on cooled blades and uncooled blades with identical surface geometry. This, along with measurements of adiabatic wall temperature, will provide a basis for analyzing the effectiveness of the film cooling scheme at a number of locations.


Author(s):  
C. W. Haldeman ◽  
R. M. Mathison ◽  
M. G. Dunn ◽  
S. Southworth ◽  
J. W. Harral ◽  
...  

This paper presents measurements and the companion CFD predictions for a fully cooled, high-work single stage HP turbine operating in a short-duration blowdown rig. Part I of this paper presented the experimental approach, and Part II focuses on the results of the measurements and demonstrates how these results compare to predictions made using the Numeca FINE/Turbo CFD package. The measurements are presented in both time-averaged and time-accurate formats. The results include the heat transfer at multiple spans on the vane, blade, and rotor shroud as well as flow path measurements of total temperature and total pressure. Surface pressure measurements are available on the vane at midspan, and on the blade at 50% and 90% spans as well as the rotor shroud. In addition, temperature and pressure measurements obtained inside the coolant cavities of both the vanes and blades are presented. Time-averaged values for the surface pressure on the vane and blade are compared to steady CFD predictions. Additional comparisons will be made between the heat transfer on cooled blades and uncooled blades with identical surface geometry. This, along with measurements of adiabatic wall temperature, will provide a basis for analyzing the effectiveness of the film-cooling scheme at a number of locations.


Author(s):  
Johannes Rohwer ◽  
Sybrand J. van der Spuy ◽  
Theodor W. von Backström ◽  
Francois G. Louw

Abstract Fan performance characteristic tests of axial flow fans provide information on the global flow field, based on stable inlet flow field distribution. More information is often required on the local flow distribution existing in the vicinity of the fan blades under installed conditions. A 1.542 m diameter scale model of an axial flow fan, termed the M-Fan is tested in an ISO 5801, type A, test facility. The M-fan was specifically designed for low-pressure, high flow rate application in air-cooled or hybrid condensers. The scaled version of the M-fan was designed to have a fan static pressure rise of 116.7 Pa at a flow rate of 14.2 m3/s. Two specially constructed M-Fan blades are manufactured to conduct blade surface pressure measurements on the blades. The fan blades are equipped with 2 mm diameter tubes that run down the length of the fan blades in order to convey the measured pressure. Piezo-resistive pressure transducers, located on the hub of the fan, measure the static pressure distribution on the blades and the data is transferred to a stationary computer using a wireless telemetry setup. The blade pressure measurement setup is re-commissioned from a previous research project and its performance is qualified by testing and comparing to experimental results obtained on the B2a-fan. Excellent correlation to previous results is obtained. The experimental M-fan results are compared against results from a periodic numerical CFD model of a fan blade modelled in an ISO 5801, Type A test facility configuration. The experimental tests and numerical model correlate well with each other. The experimental blade surface pressure measurements have a minimum Pearson correlation to the numerically determined values of 0.932 (maximum 0.971).


Author(s):  
Francois G. Louw ◽  
Theodor W. von Backström ◽  
Sybrand J. van der Spuy

Numerical modeling of the flow field in the vicinity of large axial flow fans finds application in various engineering investigations, whether for fan design purposes, fan induced flow fields or fan system modeling. These three-dimensional fan models generally require verification with experimental results to establish validity. For this purpose a comparison is generally made between the numerically and experimentally obtained fan performance characteristics (fan static pressure and static efficiency curves) to verify the model. Although this method provides a means to validate the numerical model on a global flow level, some uncertainty on the accuracy of this validated model on a local flow level (flow structures close to the fan blade) might still exist. In the present study an experimental technique is presented to measure blade surface static pressures that can be used to validate numerical fan models on a local flow level. These measurements are obtained for a specific fan by means of piezo-resistive pressure transducers mounted in a capsule on the fan axis and connected to pressure taps in specially manufactured fan blades. The transducers are also coupled to a telemetry system that samples the measured pressures and enables wireless communication between the fan and a laptop/PC. Blade surface pressure measurements are obtained for a series of volumetric flow rates through the fan and compared to the numerical data simulated using a RANS approach. A good comparison between the experimental and numerical blade surface static pressure data exists, with the largest discrepancies occurring near the hub as well as the leading and trailing edges of the blade. The reason for this discrepancy could be attributed, amongst others, to low y+ values (y+ < 30) on the blade surface in these regions, leading to errors in the calculation of the wall condition by the wall function. The experimental technique therefore provides CFD engineers with an additional tool for numerical fan model validation on a local flow level.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chengxiang Zhu ◽  
Haifeng Zhang ◽  
Zhancang Hu ◽  
Yancheng You

The multiduct inlet for turbine-based combined cycle engines receives a lot of attention on its aerodynamic performance. Aside of the most studied mode of transition processes, another significant severe issue regarding the aerodynamic performance of the turbine duct (T-duct) at ground states has rarely been investigated which indeed directly determines the operability and reality of similar engine systems; this issue will be addressed in the present work. Our numerical and experimental studies of an inward-turning tetraduct inlet indicate that the performance of the T-duct is seldom affected by the angle of attack, which however is of crucial importance for takeoff/landing of flight vehicles. The two T-ducts exhibit weak asymmetrical aerodynamic performance during experiment due to nonsynchronization as well as mechanical oscillation of the two turbine engines. With increasing inflow speed, the surface pressure and the total pressure recovery increase accordingly. At Ma∞=0.24, the total pressure recovery achieves 0.96 at the exit of the turbine duct which is acceptable for the engine to generate sufficient thrust for horizontal takeoff. A further quantitative comparison between simulation and experiment reveals a maximum deviation of only 3% in terms of both surface pressure and total pressure recovery.


1997 ◽  
Vol 11 (2) ◽  
pp. 164-172
Author(s):  
Yeol Lee ◽  
Sanjay Garg ◽  
Gary S. Settles

2015 ◽  
Vol 14 (5-6) ◽  
pp. 729-766 ◽  
Author(s):  
Franck Bertagnolio ◽  
Helge Aa. Madsen ◽  
Christian Bak ◽  
Niels Troldborg ◽  
Andreas Fischer

Sign in / Sign up

Export Citation Format

Share Document