scholarly journals Analysis on the Low Speed Performance of an Inward-Turning Multiduct Inlet for Turbine-Based Combined Cycle Engines

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chengxiang Zhu ◽  
Haifeng Zhang ◽  
Zhancang Hu ◽  
Yancheng You

The multiduct inlet for turbine-based combined cycle engines receives a lot of attention on its aerodynamic performance. Aside of the most studied mode of transition processes, another significant severe issue regarding the aerodynamic performance of the turbine duct (T-duct) at ground states has rarely been investigated which indeed directly determines the operability and reality of similar engine systems; this issue will be addressed in the present work. Our numerical and experimental studies of an inward-turning tetraduct inlet indicate that the performance of the T-duct is seldom affected by the angle of attack, which however is of crucial importance for takeoff/landing of flight vehicles. The two T-ducts exhibit weak asymmetrical aerodynamic performance during experiment due to nonsynchronization as well as mechanical oscillation of the two turbine engines. With increasing inflow speed, the surface pressure and the total pressure recovery increase accordingly. At Ma∞=0.24, the total pressure recovery achieves 0.96 at the exit of the turbine duct which is acceptable for the engine to generate sufficient thrust for horizontal takeoff. A further quantitative comparison between simulation and experiment reveals a maximum deviation of only 3% in terms of both surface pressure and total pressure recovery.

2011 ◽  
Vol 291-294 ◽  
pp. 349-354
Author(s):  
Guang Lin He ◽  
Xiao Lin Li

The influence of centerline and the cross-section variation to aerodynamic performance of the inlet was researched in a wider range. A new method of measuring the total pressure recovery coefficient and total pressure distortion coefficient of the inlet was proposed. Based on the loitering aircraft, a s-shaped inlet was designed to meet the needs of stable flight of loitering aircraft, whose total pressure recovery coefficient is 93.2% and total pressure distortion coefficient is 1.2%.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shuili Ren ◽  
Peiqing Liu

For turboprop engine, the S-shaped intake affects the engine performance and the propeller is not far in front of the inlet of the S-shaped intake, so the slipstream inevitably affects the flow field in the S-shaped intake and the engine performance. Here, an S-shaped intake with/without propeller is studied by solving Reynolds-averaged Navier-Stokes equation employed SST k-ω turbulence model. The results are presented as time-averaged results and transient results. By comparing the flow field in S-shaped intake with/without propeller, the transient results show that total pressure recovery coefficient and distortion coefficient on the AIP section vary periodically with time. The time-averaged results show that the influence of propeller slipstream on the performance of S-shaped intake is mainly circumferential interference and streamwise interference. Circumferential interference mainly affects the secondary flow in the S-shaped intake and then affects the airflow uniformity; the streamwise interference mainly affects the streamwise flow separation in the S-shaped intake and then affects the total pressure recovery. The total pressure recovery coefficient on the AIP section for the S-shaped intake with propeller is 1%-2.5% higher than that for S-shaped intake without propeller, and the total pressure distortion coefficient on the AIP section for the S-shaped intake with propeller is 1%-12% higher than that for the S-shaped intake without propeller. However, compared with the free stream flow velocity ( Ma = 0.527 ), the influence of the propeller slipstream belongs to the category of small disturbance, which is acceptable for engineering applications.


Author(s):  
Dustin J. Frohnapfel ◽  
K. Todd Lowe ◽  
Walter F. O’Brien

Abstract Over the last decade, the Turbomachinery and Propulsion Research Laboratory at Virginia Tech has researched, invented, developed, computationally analyzed, experimentally tested, and improved turbofan engine inlet distortion generators. This effort began with modernizing and improving inlet total pressure distortion screens originally conceived over half a century ago; continued with the invention of inlet swirl distortion generators (StreamVanes™) made possible only through advances in modern additive manufacturing technology; and has, thus far, culminated in a novel combined device (ScreenVanes™) capable of simulating realistic flight conditions of coupled inlet total pressure and swirl distortion in a ground-test turbofan engine research platform. The present research focuses on the methodology development, computational analysis, and experimental validation of a novel simultaneous inlet total pressure and swirl distortion generator. A case study involving a single bend S-duct inlet distortion profile demonstrates the ability to generate a high-fidelity profile simulation, yet outlines a design process sufficiently generic for application to any arbitrary inlet geometry or distortion profile. A computational fluid dynamics simulation of the S-duct inlet provided the target profile extracted at the aerodynamic interface plane. Next, utilizing a method of inverse propagation, the planar distortion profile was propagated upstream to yield a flow field that could be manufactured by a distortion generator adequately isolated from turbomachinery effects. The total pressure distortion screen and swirl distortion StreamVane components were then designed and computationally analyzed. Upon successful computational reproduction of the S-duct inlet distortion profile, experimental hardware was fabricated and tested to validate the ScreenVane methodology and distortion generating device. Comparison of the S-duct manufactured distortion and the ScreenVane manufactured distortion was used as the primary criterion for profile replication success. Results from a computational analysis of both the S-duct and ScreenVane indicated excellent agreement in distortion pattern shape, extent, and intensity with full-field total pressure recovery and swirl angle profiles matching within approximately 0.80% and 2.6°, respectively. Furthermore, experimental validation of the ScreenVane indicated nearly identical full-field total pressure recovery and swirl angle profile replication of approximately 1.10% and 2.6°, respectively, when compared to the computational results. The investigation concluded that not only was the ScreenVane device capable of accurately simulating a complex inlet distortion profile, but also produced a viable device for full-scale turbofan engine ground test.


2011 ◽  
Vol 115 (1170) ◽  
pp. 471-480 ◽  
Author(s):  
J. Masud

Abstract In this paper the computed flow and performance characteristics at low angle-of-attack (AOA) of an integrated diverterless supersonic inlet (DSI) are presented. The subsonic characteristics are evaluated at M∞ = 0·8 while the supersonic characteristics are evaluated at M∞= 1·7, which is near the design Mach number for the intake. In addition to the external flow features, the internal intake duct flow behaviour is also evaluated. The results of this study indicate effective boundary layer diversion due to the ‘bump’ compression surface in both subsonic and supersonic regimes. At M∞ = 1·7, the shockwave structure (oblique/normal shockwave) on the ‘bump’ compression surface and intake inlet is satisfactory at design (critical) mass flow rate. The intake duct flow behaviour at subsonic and supersonic conditions is generally consistent with ‘Y’ shaped intake duct of the present configuration. The secondary flow structure inside the duct has been effectively captured by present computations. The computed intake total pressure recovery at M∞ = 1·7 exhibits higher-than-conventional behaviour at low mass flow ratios, which is attributed to unique inlet design. Overall computed subsonic and supersonic total pressure recovery characteristics are satisfactory under the evaluated conditions and are also in agreement with wind tunnel test data.


Author(s):  
Jason E. Dees ◽  
James A. Tallman ◽  
Michael A. Heminger ◽  
Daniel Wilde

This study compares surface pressure measurements and predictions for a high pressure turbine first-stage nozzle vane. The surface pressure measurements were taken in a 3D annular cascade, consisting of four airfoils and five passages. The cascade was uncooled, axisymmetric at both inner and outer endwalls, and reproduced the design intent Reynolds and Mach numbers of the real engine component. Static pressure measurements were taken along the airfoil profile at 15, 50, and 85% span, with duplicate midspan measurements across the four airfoils for assessing the tangential periodicity of the flow. Static pressure measurements were also taken on the inner and outer endwall surfaces of the center airfoil passage, with 40 measurement points uniformly distributed over each endwall. Three methods of surface pressure prediction were compared with the data: (1) a 2D inviscid CFD solution of a single airfoil passage at fixed spanwise locations, (2) a 3D RANS CFD solution of a single airfoil passage, and (3) a 3D RANS CFD solution of the full five-passage cascade domain. Both of the single-passage solutions assumed flowfield periodicity in the tangential direction and compared favorably to the center passage airfoil data. This finding suggested that the cascade center passage was sufficiently representative of the full-annulus turbomachine environment and validated the cascade for further experimental studies. The adjacent airfoil pressure measurements quantified the passage-to-passage variation in the cascade flowfield, and the 3D full-cascade CFD compared favorably with the peripheral airfoil data. The full-cascade CFD also compared favorably with the data on both endwalls: with an average and maximum deviation of 0.5 and 2%, respectively. These findings provide confidence in the 3D CFD methods for use in determining local flow rates from cooling/leakage geometry, and serve as an important first step toward validating the methods for real-engine blockage effects like coolant and endwall contouring.


2013 ◽  
Vol 444-445 ◽  
pp. 1345-1349
Author(s):  
Si Yin Zhou ◽  
Wan Sheng Nie ◽  
Bo He ◽  
Xue Ke Che ◽  
Xue Min Tian

How to enhance the combustion and reduce the total pressure loss in scramjet combustor are very critical for the practical application of hypersonic aircraft. Based on the dominant thermal mechanism of arc plasma, the plasma generated in combustor is regarded as a promising method to improve the combustion. As a result, the combustor model with transverse fuel jet and plasma generated by two discharge modes at the upstream of flameholding cavity is established and it is used to study the mechanism of fuel mixing enhancement through numerical investigation. The results show that an oblique shock wave would be formed at the upstream of the pseudo small plasma hump, and interact with the separation shock wave induced by the transverse jet. This results in the recirculation zone at the upstream of fuel jet being enlarged obviously. Besides that, under the non-reaction flow conditions, the total pressure recovery coefficient increases due to the plasma generated. However, the total pressure recovery coefficient varies apparently and the shear layer above the cavity is fluctuant when the plasma is generated by periodical discharge mode. While under the reaction flow conditions, the shear layer develops thicker and the total pressure recovery coefficient decreases. And due to the existing of plasma, the mole fraction of product water increases. But compared with the steady discharge mode, the level of water is lower and the total pressure recovery coefficient decreases more under the periodical discharge mode. Though the plasma generated by steady discharge mode shows better performance in assisting combustion and reducing the pressure loss, considering the energy saving and the use of different parameters of the periodical discharge, the same effects of enhancing the fuel mixing through enlarging the recirculation zone located at the upstream of fuel jet and promoting the mass exchange of cavity can be reached. More numerical experiments have to be done to optimize the parameters of periodical discharge plasma to receive a best improvement on the performance of scramjet combustor.


2021 ◽  
Author(s):  
Satpreet Sidhu ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
R. A. Stowe ◽  
R. Pimentel

Abstract Inlets are an essential element of aircraft propulsion systems. Aircraft with fuselage-embedded engines require intake ducts with bends to direct oncoming air into the engine. Consequently they often experience flow separation, losses, total pressure distortion, and swirling flow near the engine faces, all of which are detrimental to engine stability and performance. In some aircraft, double-entrance ducts are used to meet geometric constraints and maintain the required airflow. The present paper investigated aerodynamic performance of a bifurcated Y-duct with S-bends in both horizontal and vertical planes. Intake performance was evaluated at inlet Ma = 0.63 by measuring the surface static pressure along the four stream-wise rows of pressure taps and total pressure and 3D velocities using 5-hole probe across the exit plane of the intake duct. The data were used to determine the static and total pressure recovery, together with associated radial and circumferential distortion coefficients and swirl intensity. This work provides a rare experimental data-set for a twin-entrance, moderately high-subsonic, double S-duct intake. It compared reasonably with the most similar work published, that of single-entrance ducts at higher Mach number. Pressure recovery was on par while swirl was noted to be reduced when compared with those geometries. Complementary computational fluid dynamics was useful in the qualitative comparisons as well.


Sign in / Sign up

Export Citation Format

Share Document