Non-Axisymmetric Turbine Endwall Aerodynamic Optimization Design: Part II — Turbine Stage Design and Unsteady Flow Characteristics Analysis

Author(s):  
Hao Sun ◽  
Liming Song ◽  
Jun Li ◽  
Zhenping Feng

Aerodynamic optimization design and experimental validation for the non-axisymmetric endwall profiles of the turbine cascade have been completed in the part I of this research work. Non-axisymmetric endwall profile optimization design of the turbine stage and corresponding steady and unsteady flow characteristics were presented in the part II. Aerodynamic optimization design for the non-axisymmetric endwall profile of the turbine stage was conducted when the maximization of the total-total isentropic efficiency was set as the design objective with constraint on the mass flow rate. The aerodynamic performance of the designed turbine stage was evaluated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions. The non-axisymmetric endwall profiles of the stator hub and shroud as well as the rotor hub in the turbine stage were optimized using developed endwall profile method in the part I. A total of 15 design variables were employed in the optimization for the stator and rotor endwalls. The global optimization method of the adaptive rang differential evolution algorithm was used to search the optimal non-axisymmetric endwall profile. The total-total isentropic efficiency of the turbine stage with the optimized non-axisymmetric endwall profile increases 0.26% by comparison of the referenced axisymmetric endwall design when the effects of the rotor tip clearance were also considered. The secondary flow losses of the stator and rotor were significantly reduced in the optimized non-axisymmetric endwall stage, as well as the tip leakage flow losses. In addition, the unsteady aerodynamic performance of the turbine stage with the optimized non-axisymmetric endwall profile and referenced axisymmetric endwall were numerically investigated and compared. The numerical results indicate that the fluctuating velocity in the rotor blade passage of the optimized non-axisymmetric endwall stage significantly decreases since the stator wake and secondary flow losses are reduced. Thus, the intensity of the unsteady interaction between the stator upstream flow and the flow in the rotor passage decreases. The time-averaged results indicated that the aerodynamic efficiency and output power of the turbine stage with the optimized non-axisymmetric endwall profile are higher than that of the referenced axisymmetric endwall stage. Meanwhile, the transient results at different time steps show that the periodic fluctuating amplitude of the efficiency and power of the optimized non-axisymmetric endwall stage were smaller than that of the referenced axisymmetric endwall stage due to the weaker stator/rotor unsteady interaction effects.

Author(s):  
Mingyan Yin ◽  
Jun Li ◽  
Liming Song ◽  
Bin Li ◽  
Gangyun Zhong ◽  
...  

High performance of the last stage long blade plays an important role on the aerodynamic performance of low pressure cylinder for steam turbines. Aerodynamic optimization design of the last stage long blade for the maximization total-total isentropic efficiency with constraints of mass flow rate and leaving velocity using self-adaptive differential evolution algorithm is presented in this work. The aerodynamic performance of last stage is evaluated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) computations. Six two-dimensional airfoils along the span and three controlling points for the radial foil of blade using B-Spline functions are used to parameterize the three-dimensional profiles of the stator and rotor blade of the last stage, respectively. Self-adaptive differential evolution algorithms is developed to optimize the maximization total-total isentropic efficiency of last stage. The results show that the total-total isentropic efficiency of the optimized last stage is higher 1.68% than that of the referenced design. Furthermore, the aerodynamic performance of the five stages low pressure cylinder with three extractions coupled with the optimized last stage and referenced design is analyzed and compared. The detailed flow field and aerodynamic parameters of the optimized last stage are also illustrated.


Author(s):  
Hao Liu ◽  
Chenxing Hu ◽  
Xin Shen ◽  
Xiaocheng Zhu ◽  
Hong Yang ◽  
...  

The nonaxisymmetric endwall profiling has been proven to be an effective tool to reduce the secondary flow loss in turbomachinery. In the present work, first, without considering the endwall midgap in the real machine, an endwall optimization design procedure for reducing secondary flow losses has been developed, which allowed complete three-dimensional parameterization turbine endwall design. The profile of the endwall has been designed using automatic numerical optimization by means of an improved efficient global optimization algorithm based on kriging surrogate model. Next, a large-scale linear cascade with a low-speed wind tunnel has been chosen for the experimental validation of the optimization results. The experimental measurements and numerical simulations both demonstrated that the total pressure loss and secondary flow intensity were reduced with the nonaxisymmetric endwall used in the cascade passage. Then, in order to evaluate the ability of the optimized nonaxisymmetric endwall with the midgap, the midgap was added in for both the baseline flat endwall and the optimized nonaxisymmetric endwall in the numerical simulations analysis. The entropy generation rates analysis were used for the investigation of loss distribution in the passage. For the cascade in the present work, with the midgap added in, the optimized nonaxisymmetric endwall did not perform as well as the situation without the midgap in the loss reduction. In addition, comparing to the baseline flat endwall, the optimized nonaxisymmetric endwall needed more net leakage flow to avoid the ingress of passage flow into the midgap.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Liming Song ◽  
Zhenping Feng

The non-axisymmetric endwall profiling has been proven to be an effective tool to reduce the secondary flow loss in turbomachinery. In this work, the aerodynamic optimization for the non-axisymmetric endwall profile of the turbine cascade and stage was presented and the design results were validated by annular cascade experimental measurements and numerical simulations. The parametric method of the non-axisymmetric endwall profile was proposed based on the relation between the pressure field variation and the secondary flow intensity. The optimization system combines with the non-axisymmetric endwall parameterization method, global optimization method of the adaptive range differential evolution algorithm and the aerodynamic performance evaluation method using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and k–ω SST turbulent with transition model solutions. In the part I, the optimization method is used to design the optimum non-axisymmetric endwall profile of the typical high loaded turbine stator. The design objective was selected for the maximum total pressure coefficient with constrains on the mass flow rate and outlet flow angle. Only five design variables are needed for one endwall to search the optimum non-axisymmetric endwall profile. The optimized non-axisymmetric endwall profile of turbine cascade demonstrated an improvement of total pressure coefficient of 0.21% absolutely, comparing with the referenced axisymmetric endwall design case. The reliability of the numerical calculation used in the aerodynamic performance evaluation method and the optimization result were validated by the annular vane experimental measurements. The static pressure distribution at midspan was measured while the cascade flow field was measured with the five-hole probe for both the referenced axisymmetric and optimized non-axisymmetric endwall profile cascades. Both the experimental measurements and numerical simulations demonstrated that both the secondary flow losses and the profile loss of the optimized non-axisymmetric endwall profile cascade were significantly reduced by comparison of the referenced axisymmetric case. The weakening of the secondary flow of the optimized non-axisymmetric endwall profile design was also proven by the secondary flow vector results in the experiment. The detailed flow mechanism of the secondary flow losses reduction in the non-axisymmetric endwall profile cascade was analyzed by investigating the relation between the change of the pressure gradient and the variation of the secondary flow intensity.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 669-676
Author(s):  
Di Zhang ◽  
Ma Jiao-Bin ◽  
Qi Jing

The aerodynamic performance of blade affects the vibration characteristics and stable operation of turbomachinery closely. The aerodynamic performance of turbine stage can be improved by using swept blade. In this paper, the RANS method and the RNG k-? turbulence mode were adopted to investigate the unsteady flow characteristics and excitation force of swept blade stage. According to the results, for the swept blade, the fluid of boundary layer shifts in radial direction due to the influence of geometric construction. It is observed that there is similar wake development for several kinds of stators, and the wake has a notable effect on the boundary layer of the rotor blades. When compared with straight blade, pressure fluctuation of forward-swept blade is decreased while the pressure fluctuation of backward-swept blade is increased. The axial and tangential fundamental frequency excitation force factors of 15?forward-swept blade are 0.139 and 0.052 respectively, which are the least, and all excitation force factors are in the normal range. The excitation factor of the forward-swept blade is decreased compared with straight blade, and the decreasing percentage is closely related to the swept angle. As for backward-swept blades, the situation is the other way around. Additionally, the change of axial excitation factor is more obvious. So the vibration reduction performance of forward-swept blade is better.


Author(s):  
Qingfeng Deng ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
Hai Zhang ◽  
Mingcong Luo

A three-dimensional (3D) Pressure Controlled Vortex Design (PCVD) method for turbine stage design is proposed and discussed in this paper. The concept is developed from conventional Controlled Vortex Design (CVD) via pressure control approach and CVD technology. By specifying the static pressure and axial velocity distributions, the spanwise pressure gradient incorporated with pressure gradient in streamwise and azimuthal directions is moderated. Not only can profile loss profit from pressure control approach, but also secondary flow can be managed. The reasons for CVD are derived from stream surface thickness and stream surface twist. Through modifying stream surface thickness and inducing large stream surface twist, the secondary flow migrations are controlled properly and orderly. The relations of pressure control approach and CVD technology complement one another and finally lead to a well-posed flow pattern in turbine stage. The first stage redesign of a well-designed low pressure turbine demonstrates this technique application. A significant reduction of secondary flow losses and a corresponding increase of stage efficiency have achieved.


1995 ◽  
Author(s):  
S. Fan ◽  
B. Lakshminarayana

The objective of this paper is to investigate the three dimensional unsteady flow interactions in a turbomachine stage. A three-dimensional time accurate Euler code has been developed using an explicit four-stage Runge-Kutta scheme. Three-dimensional unsteady non-reflecting boundary conditions are formulated at the inlet and at the outlet of the computational domain to remove the spurious numerical reflections. The three-dimensional code is first validated for 2-D and 3-D cascades with harmonic vortical inlet distortions. The effectiveness of non reflecting boundary conditions is demonstrated. The unsteady Euler solver is then used to simulate the propagation of nozzle wake and secondary flow through rotor and the resulting unsteady pressure field in an axial turbine stage. The three dimensional and time dependent propagation of nozzle wakes in the rotor blade row and the effects of nozzle secondary flow on the rotor unsteady surface pressure and passage flow field are studied. It was found that the unsteady flow field in the rotor is highly three-dimensional and the nozzle secondary flow has significant contribution to the unsteady pressure on the blade surfaces. Even though the steady flow at the midspan is nearly two-dimensional, the unsteady flow is 3-D and the unsteady pressure distribution can not by predicted by a 2-D analysis.


2013 ◽  
Vol 2013 (0) ◽  
pp. _0404-01_-_0404-04_
Author(s):  
Ken-ichi FUNAZAKI ◽  
Mamoru KIKUCHI ◽  
Shinya CHIDA ◽  
Koki KUDOU ◽  
Ayumi MAMADA ◽  
...  

Author(s):  
Can Ma ◽  
Xinrong Su ◽  
Xin Yuan

Unsteady blade row interactions considerably affect the performance of turbomachinery consisting of multiple blade rows. However, most aerodynamic optimizations of turbomachinery are based on mixing-plane steady flow simulations which cannot account for the unsteady effects of blade row interactions. In this work, the rotor of a two-dimensional transonic turbine stage is optimized using an in-house unsteady aerodynamic optimization system that allows for a more accurate modeling of the unsteady flow features occurring in multi-row turbomachinery configurations. The gradients of the objective function and constraint to the design variables are efficiently calculated with the discrete adjoint method. In the developed adjoint-based unsteady aerodynamic optimization system, the unsteady Reynolds-Averaged Navier-Stokes equations are solved using the harmonic balance method with an in-house code. The adjoint equations are derived by hand from the discrete form of the unsteady flow equations. The present results demonstrate the efficiency and capability of the unsteady aerodynamic optimization system for turbomachinery with multiple blade rows.


Author(s):  
Jiandao Yang ◽  
Taowen Chen ◽  
Jun Li ◽  
Zhenping Feng

Combined with three-dimensional parameterization method of exhaust diffuser profile, aerodynamic performance evaluation method, response surface approximation evaluation model and Hooke-Jeeves direct search approach, aerodynamic optimization design of exhaust hood diffuser for steam turbine is presented. The aerodynamic performance of exhaust hood design candidate is evaluated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions. Aerodynamic optimization design of exhaust hood is conducted for the maximum of the static pressure recovery coefficient of exhaust hood. The design variables are specified by the exhaust diffuser profile parameterization method. The aerodynamic performance of the optimized exhaust hood and referenced design is numerically calibrated with consideration of the full last stage and rotor tip clearance. The static pressure recovery coefficient of the optimized exhaust hood is higher than that of the referenced design with consideration of the upstream last stage influence. Furthermore, the detailed flow pattern of the optimized exhaust hood and referenced design is also analyzed and compared.


2012 ◽  
Vol 184-185 ◽  
pp. 473-476 ◽  
Author(s):  
Gao Su ◽  
Guo Yi Zhou ◽  
Fei Du

Based on a standard dual-equation turbulent flow model and coupled explicit solver,a wall function method was employed to closure the Reynolds averaged N-S equation .The mixing plane method was adopted to tranfer parameters between rotor and stator cascades. A approximate linear law is obtained in gas turbine cascade for supercharged marine boiler,which governs the variation of some parameters at the outlet of the turbine stage cascade along the blade height direction,such as pressure,velocity,as well as temperature and Ma.The results can provide guidelines for aerodynamic optimization design of the gas turbine stage cascade and the scientific management of this kind of set.


Sign in / Sign up

Export Citation Format

Share Document