An Application of Metal Plasticity in Finite Element Modeling to Predict the Low-Cycle Fatigue Life of a High-Pressure Steam Turbine Casing

Author(s):  
Zachary Dyer ◽  
George C. Altland

In the current market for large steam turbines, customers increasingly want to aggressively cycle their equipment to accommodate electrical grids that include fluctuating supplies of green energy. Increased and aggressive cycling leads to higher probability of low-cycle-fatigue cracking and provides motivation for the design of new steam turbines that are robust enough to withstand this demanding working environment yet still meet the operational and cost expectations of potential customers. ASME BPVC Section III Subsection NH provides a calculation for fatigue damage assessment using either an elastic method or an inelastic method. This paper describes how the inelastic method can be applied to large steam turbines — calculating low-cycle fatigue damage by using commercial finite element software and plastic material models to directly determine elastic-plastic strains throughout the cycle, rather than approximating them using the results of an elastic analysis. The inelastic method is applied to a steam turbine casing during startup cycles — the total strain through the cycle is calculated directly by the elastic-plastic finite element analysis (FEA) then the delta equivalent total strain is calculated using equations in Subsection NH. For comparison, an elastic method is applied to the same analysis — the maximum elastic stress is calculated by the linear-elastic FEA then the delta equivalent total strain is approximated using Neuber’s rule. The inelastic method calculates a smaller delta equivalent total strain, which leads to significantly increased fatigue life. This more sophisticated method could lead to steam turbine components with less cost, more durability, and better performance. This paper also discusses some issues in using the inelastic method, such as shakedown and ratcheting.

2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6741
Author(s):  
Grzegorz Junak ◽  
Anżelina Marek ◽  
Michał Paduchowicz

This paper presents the results of tests conducted on the HR6W (23Cr-45Ni-6W-Nb-Ti-B) alloy under low-cycle fatigue at room temperature and at 650 °C. Fatigue tests were carried out at constant values of the total strain ranges. The alloy under low-cycle fatigue showed cyclic strengthening both at room temperature and at 650 °C. The degree of HR6W strengthening described by coefficient n’ was higher at higher temperatures. At the same time, its fatigue life Nf at room temperature was, depending on the range of total strain adopted in the tests, several times higher than observed at 650 °C.


Author(s):  
Jorge E. Egger ◽  
Fabian R. Rojas ◽  
Leonardo M. Massone

AbstractLow cycle fatigue life of high-strength reinforcing steel bars (ASTM A706 Grade 80), using photogrammetry by RGB methodology is evaluated. Fatigue tests are performed on specimens under constant axial displacement with total strain amplitudes ranging from 0.01 to 0.05. The experimental observations indicate that buckling of high-strength reinforcing bars results in a damaging degradation of their fatigue life performance as the slenderness ratio increases, including an early rebar failure as the total strain amplitude increases since it achieves the plastic range faster. In addition to this, the results show that the ratio of the ultimate tensile strength to yield strength satisfies the minimum of 1.25 specified in ASTM A706 for reinforcement. On the other hand, the RGB methodology indicates that the axial strains measured by photogrammetry provide more accurate data since the registered results by the traditional experimental setup do not detect second-order effects, such as slippage or lengthening of the specimens within the clamps. Moreover, the RGB filter is faster than digital image correlation (DIC) because the RGB methodology requires a fewer computational cost than DIC algorithms. The RGB methodology allows to reduce the total strain amplitude up to 45% compared to the results obtained by the traditional setup. Finally, models relating total strain amplitude with half-cycles to failure and total strain amplitude with total energy dissipated for multiple slenderness ratios (L/d of 5, 10, and 15) are obtained.


Author(s):  
Masaki Shiratori ◽  
Yoji Ochi ◽  
Izumi Nakamura ◽  
Akihito Otani

A series of finite element analyses has been carried out in order to investigate the failure behaviors of degraded bent pipes with local thinning against seismic loading. The sensitivity of such parameters as the residual thickness, locations and width of the local thinning to the failure modes such as ovaling and local buckling and to the low cycle fatigue damage has been studied. It has been found that this approach is useful to make a reasonable experimental plan, which has to be carried out under the condition of limited cost and limited period.


2018 ◽  
Vol 774 ◽  
pp. 210-216 ◽  
Author(s):  
Thierry Barriere ◽  
Gang Cheng ◽  
Sami Holopainen

Amorphous solids, such as certain polymers, alloys, and polymer-based composites,are increasingly used materials in engineering components and thus, their fatigue behavioris of utmost importance. The article presents a unified approach suitable for modeling bothisothermal high cycle and low cycle fatigue behavior. The emphasis is placed on the ductilefatigue in which fatigue damage represents the material degeneration during the creation ofmicro-cracks governing majority of the total fatigue life (up to 95%). The model’s capability fortechnologically important polycarbonate (PC) polymer is addressed. The results, in accordancewith experimental observations, favor ductile fatigue behavior, i.e. damage fields remain smallfor most of the fatigue life and do not cause the macroscopic stress reduction. Due to thisproperty, fatigue life of an entire structural element can be evaluated by exploiting singlelocations at which the fatigue damage decisively emerges.


Sign in / Sign up

Export Citation Format

Share Document