Non-Axisymmetric Endwall Contouring in a Compressor Cascade With Tip Gap

Author(s):  
Mahesh K. Varpe ◽  
A. M. Pradeep

This paper describes the design of a non-axisymmetric hub contouring in a shroudless axial flow compressor cascade operating at near stall condition. Although, an optimum tip clearance reduces the total pressure loss, further minimization of the losses using hub contouring was achieved. The design methodology presented here combines an evolutionary principle with a three-dimensional CFD flow solver to generate different geometric profiles of the hub systematically. The total pressure loss coefficient was used as a single objective function to guide the search process for the optimum hub geometry. The resulting three dimensionally complex hub promises considerable benefits discussed in detail in this paper. A reduction of 15.2% and 16.23% in the total pressure loss and secondary kinetic energy, respectively, was achieved in the wake. The blade loading was observed to improve by about 4.53%. Other complementary benefits are also listed in the paper. The results confirm that non-axisymmetric contouring is an effective method for reducing the losses and thereby improving the performance of the cascade.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Mahesh K. Varpe ◽  
A. M. Pradeep

This paper describes the design of a nonaxisymmetric hub contouring in a shroudless axial flow compressor cascade operating at near stall condition. Although an optimum tip clearance (TC) reduces the total pressure loss, further reduction in the loss was achieved using hub contouring. The design methodology presented here combines an evolutionary principle with a three-dimensional (3D) computational fluid dynamics (CFD) flow solver to generate different geometric profiles of the hub systematically. The resulting configurations were preprocessed by GAMBIT© and subsequently analyzed computationally using ANSYSFluent©. The total pressure loss coefficient was used as a single objective function to guide the search process for the optimum hub geometry. The resulting three dimensionally complex hub promises considerable benefits discussed in detail in this paper. A reduction of 15.2% and 16.23% in the total pressure loss and secondary kinetic energy (SKE), respectively, is achieved in the wake region. An improvement of 4.53% in the blade loading is observed. Other complimentary benefits are also listed in the paper. The majority of the benefits are obtained away from the hub region. The contoured hub not only alters the pitchwise static pressure gradient but also acts as a vortex generator in an effort to alleviate the total pressure loss. The results confirm that nonaxisymmetric contouring is an effective method for reducing the losses and thereby improving the performance of the cascade.


1996 ◽  
Author(s):  
I. K. Nikolos ◽  
D. I. Douvikas ◽  
K. D. Papailiou

The possibility of predicting the total pressure loss radial distribution, due to the tip clearance presence, is examined in this paper. Models advanced for the diffusion of a line vortex are used for the simulation of the leakage vortex induced velocity and pressure fields, with sufficient success. The leakage vortex strength seems to control directly only a small part of the total pressure loss distribution, the one connected with the pressure deficit and the rotating flow. The remaining profiles result as functions of a free parameter — the constant of integration — and an assumption is needed to close the problem. The widely proposed observation for lost secondary jet kinetic energy is considered as a method of predicting the total amount of tip clearance loss in successive planes inside and downstream the blade passage. A calculation procedure for predicting the tip clearance effects in the flow field inside and downstream the tip clearance, has been developed. The method, being compatible with a meridional flow calculation procedure, accounts for the calculation of the peripherally mean deficit profiles of the various flow quantities. The predictive capability of the calculation procedure is established in a wide range of test cases, including axial flow compressor cascades, isolated rotors and multi-row machines. The radial variation of tip clearance pressure loss is calculated with sufficient accuracy for engineering purposes.


Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Karsten Liesner ◽  
Robert Meyer

The large secondary flow area in the compressor hub-corner region usually leads to three-dimensional separation in the passage with large amounts of total pressure loss. In this paper numerical simulations of a linear high-speed compressor cascade, consisting of five NACA 65-K48 stator profiles, were performed to analyze the flow mechanism of hub-corner separation for the base flow. Experimental validation is used to verify the numerical results. Active control of the hub-corner separation was investigated by using boundary layer suction. The influence of the selected locations of the endwall suction slot was investigated in an effort to quantify the gains of the compressor cascade performance. The results show that the optimal chordwise location should contain the development section of the three-dimensional corner separation downstream of the 3D corner separation onset. The best pitchwise location should be close enough to the vanes’ suction surface. Therefore the optimal endwall suction location is the MTE slot, the one from 50% to 75% chord at the hub, close to the blade suction surface. By use of the MTE slot with 1% suction flow ratio, the total-pressure loss is substantially decreased by about 15.2% in the CFD calculations and 9.7% in the measurement at the design operating condition.


2020 ◽  
Author(s):  
Roupa Agbadede ◽  
Biweri Kainga

Abstract This study presents an investigation of wash fluid preheating on the effectiveness of online compressor washing in industrial gas turbines. Crude oil was uniformly applied on the compressor cascade blades surfaces using a roller brush, and carborundum particles were ingested into the tunnel to create accelerated fouled blades. Demineralized water was preheated to 500C using the heat coil provided in the tank. When fouled blades washed with preheated demineralized and the one without preheating were compared, it was observed that there was little or no difference in terms of total pressure loss coefficient and exit flow angle. However, when the fouled and washed cases were compared, there was a significant different in total pressure loss coefficient and exit flow angle.


Author(s):  
Pavlos K. Zachos ◽  
Vassilios Pachidis ◽  
Bernard Charnley ◽  
Pericles Pilidis

The performance prediction of axial flow compressors and turbines still relies on the stationary testing of blade cascades. Most of the blade testing studies are done for operating conditions close to the design point or in off-design areas not too far from it. However, blade performance remains unexplored at very far off-design conditions, such as windmilling, characterised by operation under extremely low mass flows and rotational speeds which, in turn, imply highly negative incidence angle values. In this paper, the flow field generated by a 3-dimensional linear compressor cascade at a highly negative incidence angle and zero rotational speed is experimentally investigated using a pneumatic miniature cobra probe. The main objective of the study is to derive the total pressure loss through the blades at such a highly negative incidence angle. An overview of the blade geometry as well as of the experimental facility is given whereas the measurement strategy and the data acquisition technique are also presented. An uncertainty study taking into account the most significant factors affecting the quality of the results has been carried out. As shown by the measurements taken at specific positions downstream of the blades, the flowfield is dominated by highly separated flows on the pressure surface, which contribute to the increased values of the total pressure loss coefficient which seems to be weakly dependent on the inlet Mach number. The quantitative measure of the pressure losses at the extremely negative incidence angle examined can be considered to be a validation platform for correspondent numerical studies of similar flow conditions. Additionally, the experimental results obtained can be used to extend the applicability of the current pressure loss models, increasing the predictive capability of the through flow numerical approaches towards far off-design areas of component or whole engine operation.


Author(s):  
Cong Chen ◽  
Jianyang Yu ◽  
Fu Chen

In order to explore the control mechanism of vortex generator jet, which is located in the passage (PVGJ), on the separation flow, the influence of the pitch angle, skew angle, locations and jet-to-inflow ratio are studied using numerical methods in a high subsonic compressor cascade. The changing of the flow pattern is also analyzed in detail. The results show that the control effect of the end-wall vortex generator jet located in the passage is better than the leading edge one and the aerodynamic performance is effectively improved. The maximum total pressure loss coefficient decreases by 12% and the static pressure coefficient increases by 5.2% while the jet-to-inflow ratio is only 0.3%. The control effect is sensitive to the change of jet parameters. When 0 deg < β < 80 deg, 20 deg < α < 50 deg,, x < 0.5B, y < 0.15t, the vortex generation jet could acquire an ideal control effect. As the jet mass increases, the total pressure loss coefficient gradually reduces. The VGJ prevent separation mainly by bringing high momentum fluid into the near wall region and by promoting momentum transport through turbulent mixing in previous studies. Both the LVGJ and PVGJ mainly take advantage of jet vortex to prevent the cross flow from interacting with the suction side boundary layer.


Aerospace ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 57 ◽  
Author(s):  
Tommaso Piovesan ◽  
Andrea Magrini ◽  
Ernesto Benini

Modern aeronautic fans are characterised by a transonic flow regime near the blade tip. Transonic cascades enable higher pressure ratios by a complex system of shockwaves arising across the blade passage, which has to be correctly reproduced in order to predict the performance and the operative range. In this paper, we present an accurate two-dimensional numerical modelling of the ARL-SL19 transonic compressor cascade. A large series of data from experimental tests in supersonic wind tunnel facilities has been used to validate a computational fluid dynamic model, in which the choice of turbulence closure resulted critical for an accurate reproduction of shockwave-boundary layer interaction. The model has been subsequently employed to carry out a parametric study in order to assess the influence of main flow variables (inlet Mach number, static pressure ratio) and geometric parameters (solidity) on the shockwave pattern and exit status. The main objectives of the present work are to perform a parametric study for investigating the effects of the abovementioned variables on the cascade performance, in terms of total-pressure loss coefficient, and on the shockwave pattern and to provide a quite large series of data useful for a preliminary design of a transonic compressor rotor section. After deriving the relation between inlet and exit quantities, peculiar to transonic compressors, exit Mach number, mean exit flow angle and total-pressure loss coefficient have been examined for a variety of boundary conditions and parametrically linked to inlet variables. Flow visualisation has been used to describe the shock-wave pattern as a function of the static pressure ratio. Finally, the influence of cascade solidity has been examined, showing a potential reduction of total-pressure loss coefficient by employing a higher solidity, due to a significant modification of shockwave system across the cascade.


Author(s):  
Matthias Boese ◽  
Leonhard Fottner

An experimental investigation of the influence of riblet surface structures on the loss behavior of a highly loaded compressor cascade V103-180 featuring a large chord length for high spatial resolution of the flow phenomena was performed. The cascade experiments were carried out at the High Speed Cascade Wind Tunnel of the University of the Armed Forces Munich in order to simulate realistic Mach and Reynolds numbers. The riblets used for the first investigation are of symmetric v-groove type with heights of 0.0762, 0.1143 and 0.1524 mm, respectively [1]. With two total pressure probes simultaneously traversed over one pitch behind the center airfoil, the local total pressure difference between the structured and the smooth blade is determined. From these measurements, the total pressure loss coefficient can be evaluated. For a better understanding of the flow phenomena, the profile pressure distribution is measured for the smooth and the structured blade. Boundary layer calculations were performed in order to optimise the riblet size for the design conditions of the compressor cascade. Resulting from the measurements an optimised riblet configuration (size and shape) has been manufactured and transferred to the cascade. Further flow measurements have been performed in order to evaluate the total pressure loss coefficient. Additional insight into the flow phenomena of the boundary layer has been achieved by laser-two-focus measurements. The experimental results indicate that the riblets mainly influence the suction side boundary layer behaviour. The ideal dimensionless groove height is obtained h+ = 9 leading to a reduction of the loss coefficient of 6–8%. Values of h+ &gt; 20 cause an increase of the loss coefficient due to the development of a turbulent boundary layer separation.


2020 ◽  
Vol 12 (2) ◽  
pp. 217-228
Author(s):  
Prabhat SINGH ◽  
Dharmahinder Singh CHAND

Long-term performance of an axial-flow compressor by the scheduling of inlet guide vanes at off-design conditions has been studied in this paper. The compressors are used in various industries and in aviation sectors for different operations at different climatic conditions; due to diverse climatic conditions the compressor is unable to give good performances as expected. At the design conditions, the results show that the variations in total pressure loss coefficient, volume flow rate, pressure ratio, and others like thermodynamics, aerodynamic properties are different at different stagger angles of 15°, 30° and 45°. BladeGen tools were used to design the inlet guide vanes for the investigations. The performance parameters of the axial flow compressor were analyzed by using ANSYS CFX and were validated using the analytical method. The objective of this study is to minimize the total pressure loss coefficient and improve the aerodynamic characteristics of an inlet guide vanes at different stagger angles and hence reduce the overall fuel consumption. The outcomes of this work give an improved insight into the efficient use of a VIGV in axial flow compressor.


Author(s):  
Yun Wu ◽  
Xiao-hu Zhao ◽  
Ying-hong Li ◽  
Jun Li

Corner separation, which forms over the suction surface and endwall corner of a blade passage, causes significant total pressure loss in highly loaded compressors. Plasma flow control, based on the plasma aerodynamic actuation, is a novel active flow control technique to improve aircrafts’ aerodynamic characteristics and propulsion efficiency. This paper reports computational and experimental results on using three types of plasma aerodynamic actuation (PAA) to control the corner separation in a highly loaded, low speed, linear compressor cascade. Reynolds-Averaged Navier-Stokes simulations were performed to optimize the PAA arrangement. The PAA was generated by a microsecond or nanosecond dielectric barrier discharge in wind tunnel experiments. The total pressure loss coefficient distribution was adopted to evaluate the corner separation control effect. The control effect of pitch-wise PAA on the endwall, in terms of relative reduction of the pitch-wise averaged total pressure loss coefficient in the wake, is much better than that of stream-wise PAA on the suction surface. When both pitch-wise PAA on the endwall and stream-wise PAA on the suction surface are turned on simultaneously, the control effect is the best among all three types of PAA. The main effect of pitch-wise PAA on the endwall is to inhibit the crossflow from neighboring pressure surface to the suction surface, whilest the main effect of stream-wise PAA on the suction surface is to inhibit the boundary layer accumulation and separation. Compared to microsecond discharge PAA, nanosecond discharge PAA is more effective at higher freestream velocity. The mechanisms for nanosecond discharge and microsecond discharge PAA are different for corner separation control.


Sign in / Sign up

Export Citation Format

Share Document