Impact of Swirl Flow on Combustor Liner Heat Transfer and Cooling: A Numerical Investigation With Hybrid RANS-LES Models

Author(s):  
L. Mazzei ◽  
A. Andreini ◽  
B. Facchini ◽  
F. Turrini

This paper reports the main findings of a numerical investigation aimed at characterizing the flow field and the wall heat transfer resulting from the interaction of a swirling flow provided by lean burn injectors and a slot cooling system, which generates film cooling in the first part of the combustor liner. In order to overcome some well-known limitations of RANS approach, e.g. the underestimation of mixing, the simulations were performed with hybrid RANS-LES models, namely SAS-SST and DES-SST, which are proving to be a viable approach to resolve the main structures of the flow field. The numerical results were compared to experimental data obtained on a non-reactive three sector planar rig developed in the context of the EU project LEMCOTEC. The analysis of the flow field has highlighted a generally good agreement against PIV measurements, especially for the SAS-SST model, whereas DES-SST returns some discrepancies in the opening angle of the swirling flow, altering the location of the corner vortex. Also the assessment in terms of Nu/Nu0 distribution confirms the overall accuracy of SAS-SST, where a constant over-prediction in the magnitude of the heat transfer is shown by DES-SST, even though potential improvements with mesh refinement are pointed out.

Author(s):  
Antonio Andreini ◽  
Gianluca Caciolli ◽  
Bruno Facchini ◽  
Alessio Picchi ◽  
Fabio Turrini

Lean burn swirl stabilized combustors represent the key technology to reduce NOx emissions in modern aircraft engines. The high amount of air admitted through a lean-burn injection system is characterized by very complex flow structures such as recirculations, vortex breakdown and processing vortex core, that may deeply interact in the near wall region of the combustor liner. This interaction and its effects on the local cooling performance make the design of the cooling systems very challenging, accounting for the design and commission of new test rigs for detailed analysis. The main purpose of the present work is the characterization of the flow field and the wall heat transfer due to the interaction of a swirling flow coming out from real geometry injectors and a slot cooling system which generates film cooling in the first part of the combustor liner. The experimental setup consists of a non-reactive three sector planar rig in an open loop wind tunnel; the rig, developed within the EU project LEMCOTEC, includes three swirlers, whose scaled geometry reproduces the real geometry of an Avio Aero PERM (Partially Evaporated and Rapid Mixing) injector technology, and a simple cooling scheme made up of a slot injection, reproducing the exhaust dome cooling mass flow. Test were carried out imposing realistic combustor operating conditions, especially in terms of reduced mass flow rate and pressure drop across the swirlers. The flow field is investigated by means of PIV, while the measurement of the heat transfer coefficient is performed through Thermochromic Liquid Crystals steady state technique. PIV results show the behavior of flow field generated by the injectors, their mutual interaction and the impact of the swirled main flow on the stability of the slot film cooling. TLC measurements, reported in terms of detailed 2D heat transfer coefficient maps, highlight the impact of the swirled flow and slot film cooling on wall heat transfer.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Antonio Andreini ◽  
Gianluca Caciolli ◽  
Bruno Facchini ◽  
Alessio Picchi ◽  
Fabio Turrini

Lean-burn swirl stabilized combustors represent the key technology to reduce NOx emissions in modern aircraft engines. The high amount of air admitted through a lean-burn injection system is characterized by very complex flow structures, such as recirculations, vortex breakdown, and processing vortex core, which may deeply interact in the near wall region of the combustor liner. This interaction and its effects on the local cooling performance make the design of the cooling systems very challenging, accounting for the design and commission of new test rigs for detailed analysis. The main purpose of the present work is the characterization of the flow field and the wall heat transfer due to the interaction of a swirling flow coming out from real geometry injectors and a slot cooling system which generates film cooling in the first part of the combustor liner. The experimental setup consists of a nonreactive three sector planar rig in an open loop wind tunnel; the rig, developed within the EU project Low Emissions Core-Engine Technologies (LEMCOTEC), includes three swirlers, whose scaled geometry reproduces the real geometry of an Avio Aero partially evaporated and rapid mixing (PERM) injector technology, and a simple cooling scheme made up of a slot injection, reproducing the exhaust dome cooling mass flow. Test were carried out imposing realistic combustor operating conditions, especially in terms of reduced mass flow rate and pressure drop across the swirlers. The flow field is investigated by means of particle image velocimetry (PIV), while the measurement of the heat transfer coefficient is performed through thermochromic liquid crystals (TLCs) steady state technique. PIV results show the behavior of flow field generated by the injectors, their mutual interaction, and the impact of the swirled main flow on the stability of the slot film cooling. TLC measurements, reported in terms of detailed 2D heat transfer coefficient maps, highlight the impact of the swirled flow and slot film cooling on wall heat transfer.


Author(s):  
Hong Yin

In advanced gas turbine technology, lean premixed combustion is an effective strategy to reduce peak temperature and thus, NO[Formula: see text] emissions. The swirler is adopted to establish recirculation flow zone, enhancing mixing and stabilizing the flame. Therefore, the swirling flow is dominant in the combustor flow field and has impact on the vane. This paper mainly investigates the swirling flow effect on the turbine first stage vane cooling system by conducting a group of numerical simulations. Firstly, the numerical methods of turbulence modeling using RANS and LES are compared. The computational model of one single swirl flow field is considered. Both the RANS and LES results give reasonable recirculation zone shape. When comparing the velocity distribution, the RANS results generally match the experimental data but fail to at some local area. The LES modeling gives better results and more detailed unsteady flow field. In the second step, the RANS modeling is incorporated to investigate the vane film cooling performance under the swirling inflow boundary condition. According to the numerical results, the leading edge film cooling is largely altered by the swirling flow, especially for the swirl core-leading edge aligned case. Compared to the pressure side, the suction side film cooling is more sensitive to the swirling flow. Locally, the film cooling jet is lifted and turned by the strong swirling flow.


Author(s):  
Lorenzo Mazzei ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Fabio Turrini

This paper reports the main findings of a numerical investigation aimed at characterizing the flow field and the wall heat transfer resulting from the interaction of a swirling flow provided by lean-burn injectors and a slot cooling system, which generates film cooling in the first part of the combustor liner. In order to overcome some well-known limitations of Reynolds-averaged Navier–Stokes (RANS) approach, e.g., the underestimation of mixing, the simulations were performed with hybrid RANS–large eddy simulation (LES) models, namely, scale-adaptive simulation (SAS)–shear stress transport (SST) and detached eddy simulation (DES)–SST, which are proving to be a viable approach to resolve the main structures of the flow field. The numerical results were compared to experimental data obtained on a nonreactive three-sector planar rig developed in the context of the EU project LEMCOTEC. The analysis of the flow field has highlighted a generally good agreement against particle image velocimetry (PIV) measurements, especially for the SAS–SST model, whereas DES–SST returns some discrepancies in the opening angle of the swirling flow, altering the location of the corner vortex. Also the assessment in terms of Nu/Nu0 distribution confirms the overall accuracy of SAS–SST, where a constant overprediction in the magnitude of the heat transfer is shown by DES–SST, even though potential improvements with mesh refinement are pointed out.


Author(s):  
Quanhong Xu ◽  
Chi Zhang ◽  
Yuzhen Lin ◽  
Gaoen Liu

The present study is conducted to investigate the characteristics of the flow field and heat transfer in an impingement/effusion cooling scheme for gas turbine combustor liner. It is designed to provide an insight, through the study of the flow field, into the physical mechanisms responsible for the enhanced impingement heat transfer near the effusion hole entrance. In this impingement/effusion cooling scheme, the angle between the impingement hole and effusion hole and the wall surface are 90 deg and 30 deg respectively. The square arrays of impingement/effusion holes are used with equal numbers of holes offset half a pitch relative to each plate so that an impingement jet is located on the center of each four effusion holes and vice versa. The flow field of the double skin wall space is described by the way of Particle Image Velocimetry (PIV). Two kinds of target plates, with and without effusion holes, are used in the impingement heat transfer study. Through changing the impingement Reynolds and the impingement gap, the change of the impingement heat transfer coefficient on the target plates is investigated. The impingement heat transfer test results show that the impingement heat transfer is enhanced near the entrance of the effusion holes, which could fully explain the feature of the impingement heat transfer coefficient on the target plate.


Author(s):  
E. Burberi ◽  
D. Massini ◽  
L. Cocchi ◽  
L. Mazzei ◽  
A. Andreini ◽  
...  

Increasing turbine inlet temperature is one of the main strategies used to accomplish the demands of increased performance of modern gas turbines. As a consequence, optimization of the cooling system is of paramount importance in gas turbine development. Leading edge represents a critical part of cooled nozzles and blades, given the presence of the hot gases stagnation point and the unfavourable geometry for cooling. This paper reports the results of a numerical investigation aimed at assessing the rotation effects on the heat transfer distribution in a realistic leading edge internal cooling system of a high pressure gas turbine blade. The numerical investigation was carried out in order to support and to allow an in-depth understanding of the results obtained in a parallel experimental campaign. The model is composed of a trapezoidal feeding channel which provides air to the cold bridge system by means of three large racetrack-shaped holes, generating coolant impingement on the internal concave leading edge surface, whereas four big fins assure the jets confinement. Air is then extracted through 4 rows of 6 holes reproducing the external cooling system composed of shower-head and film cooling holes. Experiments were performed in static and rotating conditions replicating the typical range of jet Reynolds number (Rej) from 10000 to 40000 and Rotation number (Roj) up to 0.05, for three crossflow cases representative of the working condition that can be found at blade tip, midspan and hub, respectively. Experimental results in terms of flow field measurements on several internal planes and heat transfer coefficient on the LE internal surface have been performed on two analogous experimental campaigns at University of Udine and University of Florence respectively. Hybrid RANS-LES models were used for the simulations, such as Scale Adaptive Simulation (SAS) and Detached Eddy Simulation (DES), given their ability to resolve the complex flow field associated with jet impingement. Numerical flow field results are reported in terms of both jet velocity profiles and 2D vector plots on symmetry and transversal internal planes, while the heat transfer coefficient distributions are presented as detailed 2D maps together with radial and tangential averaged Nusselt number profiles. A fairly good agreement with experimental measurements is observed, which represent a validation of the adopted computational model. As a consequence, the computed aerodynamic and thermal fields also allow an in-depth interpretation of the experimental results.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4993
Author(s):  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Tommaso Bacci ◽  
Antonio Andreini ◽  
Bruno Facchini

The presence of injectors with strongly swirled flows, used to promote flame stability in the combustion chambers of gas turbines, influences the behaviour of the effusion cooling jets and consequently of the liner’s cooling capabilities. For this reason, unsteady behaviour of the jets in the presence of swirling flow requires a characterization by means of experimental flow field analyses. The experimental setup of this work consists of a non-reactive single-sector linear combustor test rig, scaled up with respect to the real engine geometry to increase spatial resolution and to reduce the frequencies of the unsteadiness. It is equipped with a radial swirler and multi-perforated effusion plates to simulate the liner cooling system. Two effusion plates were tested and compared: with cylindrical and with laid-back fan-shaped 7-7-7 holes in staggered arrangement. Time resolved Particle Image Velocimetry has been carried out: the unsteady characteristics of the jets, promoted by the intermittent interactions with the turbulent mainstream, have been investigated as their vortex structures and turbulent decay. The results demonstrate how an unsteady analysis is necessary to provide a complete characterization of the coolant behaviour and of its turbulent mixing with mainflow, which affect, in turn, the film cooling capability and liner’s lifetime.


Author(s):  
T. Bacci ◽  
R. Becchi ◽  
A. Picchi ◽  
B. Facchini

In modern lean burn aero-engine combustors, highly swirling flow structures are adopted to control the fuel-air mixing and to provide the correct flame stabilization mechanisms. Aggressive swirl fields and high turbulence intensities are hence expected in the combustor-turbine interface. Moreover, to maximize the engine cycle efficiency, an accurate design of the high pressure nozzle cooling system must be pursued: in a film cooled nozzle the air taken from last compressor stages is ejected through discrete holes drilled on vane surfaces to provide a cold layer between hot gases and turbine components. In this context, the interactions between the swirling combustor outflow and the vane film cooling flows play a major role in the definition of a well performing cooling scheme, demanding for experimental campaigns at representative flow conditions. An annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central airfoil aligned with the central swirler. In this experimental work, adiabatic film effectiveness measurements have been carried out in the central sector vanes, in order to characterize the film-cooling performance under swirling inflow conditions. The Pressure Sensitive Paint technique, based on heat and mass transfer analogy, has been exploited to catch highly detailed 2D distributions. Carbon dioxide has been used as coolant in order to reach a coolant-to-mainstream density ratio of 1.5. Turbulence and five hole probe measurements at inlet/outlet of the cascade have been carried out as well, in order to highlight the characteristics of the flow field passing through the cascade and to provide precise boundary conditions. Results have shown a relevant effect of the swirling mainflow on the film cooling behaviour. Differences have been found between the central airfoil and the adjacent ones, both in terms of leading edge stagnation point position and of pressure and suction side film coverage characteristics.


Author(s):  
Antonio Andreini ◽  
Riccardo Becchi ◽  
Bruno Facchini ◽  
Lorenzo Mazzei ◽  
Alessio Picchi ◽  
...  

In the continuous demand of increasing cooling efficiency for novel combustor liners, it is necessary to have a comprehensive understanding of the interaction of hot gases with coolant flows. The aim of the present study is the experimental characterization of the flow field and the measurement of liner heat transfer coefficient in a combustion chamber model equipped with an axial swirler and a liner slot cooling scheme. The test rig geometry consists in a linear three sector chamber fed by an open loop blower. The system is operated at isothermal conditions. A highly swirled main stream flow is achieved by considering an injector geometries that produce flow structures which interact with film cooling flow delivered by a simplified slot at the inner wall of the liner. To study the effects of this mutual interaction, the flow field and the liner heat transfer are investigated at different slot cooling and injector flow rates. A 2D PIV (Particle Image Velocimetry) technique is employed to investigate the test section flow field on two different planes. An experimental campaign focused on liner heat transfer measurement is carried out using a TLC (Thermochromic Liquid Crystals) steady state technique with a thin Inconel heating foil fed by two copper bus bars. Results obtained indicate an appreciable role of film cooling flow on both swirler aerodynamics and the liner heat transfer coefficient. When the slot cooling flow rate is increased, the observed peak of heat transfer coefficient, due to liner-swirl flow interaction, gradually reduces. This is a consequence of a reduction in swirling jet expansion when slot cooling is increased, which also affects the amount of flow recirculation due to vortex breakdown.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Tommaso Bacci ◽  
Riccardo Becchi ◽  
Alessio Picchi ◽  
Bruno Facchini

In modern lean-burn aero-engine combustors, highly swirling flow structures are adopted to control the fuel-air mixing and to provide the correct flame stabilization mechanisms. Aggressive swirl fields and high turbulence intensities are hence expected in the combustor-turbine interface. Moreover, to maximize the engine cycle efficiency, an accurate design of the high-pressure nozzle cooling system must be pursued: in a film-cooled nozzle, the air taken from last compressor stages is ejected through discrete holes drilled on vane surfaces to provide a cold layer between hot gases and turbine components. In this context, the interactions between the swirling combustor outflow and the vane film cooling flows play a major role in the definition of a well-performing cooling scheme, demanding for experimental campaigns at representative flow conditions. An annular three-sector combustor simulator with fully cooled high-pressure vanes has been designed and installed at THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion-cooled liners, and six film-cooled high-pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central airfoil aligned with the central swirler. In this experimental work, adiabatic film effectiveness measurements have been carried out in the central sector vanes, in order to characterize the film-cooling performance under swirling inflow conditions. The pressure-sensitive paint (PSP) technique, based on heat and mass transfer analogy, has been exploited to catch highly detailed 2D distributions. Carbon dioxide has been used as coolant in order to reach a coolant-to-mainstream density ratio of 1.5. Turbulence and five-hole probe measurements at inlet/outlet of the cascade have been carried out as well, in order to highlight the characteristics of the flow field passing through the cascade and to provide precise boundary conditions. Results have shown a relevant effect of the swirling mainflow on the film cooling behavior. Differences have been found between the central airfoil and the adjacent ones, both in terms of leading edge stagnation point position and of pressure and suction side film coverage characteristics.


Sign in / Sign up

Export Citation Format

Share Document