Flame Holding in the Premixing Zone of a Gas Turbine Model Combustor After Forced Ignition of H2-NG-Air-Mixtures

Author(s):  
Matthias Utschick ◽  
Thomas Sattelmayer

Flashback and self-ignition in the premixing zone of typical gas turbine swirl combustors in lean premixed operation are immanent risks and can lead to damage and failure of components. Thus, steady combustion in the premixing zone must be avoided under all circumstances. This study experimentally investigates the flame holding propensity of fuel injectors in the swirler of a gas turbine model combustor with premixing of H2-NG-air-mixtures under atmospheric pressure and proposes a model to predict the limit for safe operation. The A2EV swirler concept exhibits a hollow, thick walled conical structure with four tangential slots. Four fuel injector geometries were tested. One of them injects the fuel orthogonal to the air flow in the slots (jet-in-crossflow-injector, JICI). Three injector types introduce the fuel almost isokinetic to the air flow at the trailing edge of the swirler slots (trailing edge injector, TEI). A cylindrical duct and a window in the swirler made of quartz glass allow the application of optical diagnostics (OH* chemiluminescence and Planar Laser Induced Fluorescence of the OH radical (OH-PLIF)) inside the swirler. The fuel-air-mixture was ignited with a focused single laser pulse during steady operation. The position of ignition was located inside the swirler in proximity to a fuel injection hole. If the flame was washed out of the premixing zone not later than four seconds after the ignition the operation point was defined as safe. Operation points were investigated at three air mass flows, three air ratios, two air preheat temperatures (573 K, 673 K) and 40 to 100 percent per volume hydrogen in the fuel composed of hydrogen and natural gas. The determined safety limit for atmospheric pressure yields a similarity rule based on a critical Damköhler number. Application of the proposed rule at conditions typical for gas turbines leads to these safety limits for the A2EV burner: With the TEIs the swirler can safely operate with up to 80 percent per volume hydrogen content in the fuel at an air ratio of two. With the JIC injector safe operation at stoichiometric conditions and 95 percent per volume hydrogen is possible.

Author(s):  
Matthias Utschick ◽  
Thomas Sattelmayer

Flashback (FB) and self-ignition in the premixing zone of typical gas turbine swirl combustors in lean premixed operation are immanent risks and can lead to damage and failure of components. Thus, steady combustion in the premixing zone must be avoided under all circumstances. This study experimentally investigates the flame holding propensity of fuel injectors in the swirler of a gas turbine model combustor with premixing of H2–natural gas (NG)–air mixtures under atmospheric pressure and proposes a model to predict the limit for safe operation. The A2EV swirler concept exhibits a hollow, thick walled conical structure with four tangential slots. Four fuel injector geometries were tested. One of them injects the fuel orthogonal to the air flow in the slots (jet-in-crossflow injector, JICI). Three injector types introduce the fuel almost isokinetic to the air flow at the trailing edge of the swirler slots (trailing edge injector, TEI). A cylindrical duct and a window in the swirler made of quartz glass allow the application of optical diagnostics (OH* chemiluminescence and planar laser induced fluorescence of the OH radical (OH-PLIF)) inside the swirler. The fuel–air mixture was ignited with a focused single laser pulse during steady operation. The position of ignition was located inside the swirler in proximity to a fuel injection hole. If the flame was washed out of the premixing zone not later than 4 s after the ignition, the operation point was defined as safe. Operation points were investigated at three air mass flows, three air ratios, two air preheat temperatures (573 K and 673 K), and 40 to 100 percent per volume hydrogen in the fuel composed of hydrogen and natural gas. The determined safety limit for atmospheric pressure yields a similarity rule based on a critical Damköhler number. Application of the proposed rule at conditions typical for gas turbines leads to these safety limits for the A2EV burner: With the TEIs, the swirler can safely operate with up to 80 percent per volume hydrogen content in the fuel at an air ratio of two. With the JIC injector, safe operation at stoichiometric conditions and 95 percent per volume hydrogen is possible.


Author(s):  
Matthias Utschick ◽  
Daniel Eiringhaus ◽  
Christian Köhler ◽  
Thomas Sattelmayer

This study investigates the influence of the fuel injection strategy on safety against flashback in a gas turbine model combustor with premixing of H2-air-mixtures. The flashback propensity is quantified and the flashback mechanism is identified experimentally. The A2EV swirler concept exhibits a hollow, thick walled conical structure with four tangential slots. Four fuel injector geometries were tested. One of them injects the fuel orthogonal to the air flow in the slots (jet-in-crossflow-injector, JICI). Three injector types introduce the fuel almost isokinetic to the air flow at the trailing edge of the swirler slots (trailing edge injector, TEI). Velocity and mixing fields in mixing zone and combustion chamber in isothermal water flow were measured with High-speed-Particle-Image-Velocimetry (PIV) and Highspeed-Laser-Induced-Fluorescence (LIF). The flashback limit was determined under atmospheric pressure for three air mass flows and 673 K preheat temperature for H2-air-mixtures. Flashback mechanism and trajectory of the flame tip during flashback were identified with two stereoscopically oriented intensified high-speed cameras observing the OH* radiation. We notice flashback in the core flow due to Combustion Induced Vortex Breakdown (CIVB) and Turbulent upstream Flame Propagation (TFP) near the wall dependent on the injector type. The Flashback Resistance (FBR) defined as the ratio between a characteristic flow speed and a characteristic flame speed measures the direction of propagation of a turbulent flame in the flow field. Although CIVB cannot be predicted solely based on the FBR, its distribution gives evidence for CIVB-prone states. The fuel should be injected preferably isokinetic to the air flow along the entire trailing edge in oder to reduce the RMS fluctuation of velocity and fuel concentration. The characteristic velocity in the entire cross section of the combustion chamber inlet should be at least twice the characteristic flame speed. The position of the stagnation point should be tuned to be located in the combustion chamber by adjusting the axial momentum. Those measures lead to safe operation with highly reactive fuels at high equivalence ratios.


2016 ◽  
Vol 139 (4) ◽  
Author(s):  
Matthias Utschick ◽  
Daniel Eiringhaus ◽  
Christian Köhler ◽  
Thomas Sattelmayer

This study investigates the influence of the fuel injection strategy on safety against flashback in a gas turbine model combustor with premixing of H2–air mixtures. The flashback propensity is quantified and the flashback mechanism is identified experimentally. The A2EV swirler concept exhibits a hollow, thick-walled conical structure with four tangential slots. Four fuel injector geometries were tested. One of them injects the fuel orthogonal to the air flow in the slots (jet-in-crossflow injector (JICI)). Three injector types introduce the fuel almost isokinetic to the air flow at the trailing edge of the swirler slots (trailing edge injector (TEI)). Velocity and mixing fields in mixing zone and combustion chamber in isothermal water flow were measured with high-speed particle image velocimetry (PIV) and high-speed laser-induced fluorescence (LIF). The flashback limit was determined under atmospheric pressure for three air mass flows and 673 K preheat temperature for H2–air mixtures. Flashback mechanism and trajectory of the flame tip during flashback were identified with two stereoscopically oriented intensified high-speed cameras observing the OH* radiation. We notice flashback in the core flow due to combustion-induced vortex breakdown (CIVB) and turbulent flame propagation (TFP) near the wall dependent on the injector type. The flashback resistance (FBR) defined as the ratio between a characteristic flow speed and a characteristic flame speed measures the direction of propagation of a turbulent flame in the flow field. Although CIVB cannot be predicted solely based on the FBR, its distribution gives evidence for CIVB-prone states. The fuel should be injected preferably isokinetic to the air flow along the entire trailing edge in order to reduce the RMS fluctuation of velocity and fuel concentration. The characteristic velocity in the entire cross section of the combustion chamber inlet should be at least twice the characteristic flame speed. The position of the stagnation point should be tuned to be located in the combustion chamber by adjusting the axial momentum. Those measures lead to safe operation with highly reactive fuels at high equivalence ratios.


Author(s):  
David P. Guimond ◽  
Matthew E. Thomas ◽  
Roberto DiSalvo ◽  
Adam Elliot ◽  
D. Scott Crocker

Recent breakthroughs in the field of hydrocarbon fuel electrostatic charging techniques have now permitted the opportunity for the Navy to consider implementing this technology into shipboard gas turbines. This research effort is focused toward electrostatic atomization insertion into a U.S. Navy Shipboard Rolls Royce Corporation 501-K research engine at the Naval Surface Warfare Center, Carderock Division (NSWCCD). Specific milestones achieved thus far include: (a) Spray demonstration of an electrostatically boosted 501-K gas turbine fuel injector prototype at fuel flows from 40 PPH to 250 PPH. (b) Electrostatic charging effect measurements on the droplet size and patternation of a 501-K simplex atomizer configuration. (c) Numerical modeling of the influence electrostatic charging has on secondary atomization breakup and predicted particulate emissions. This paper documents results associated with injector conceptual design, electrode integration, atomization measurements, numerical modeling and fuel injection system integration. Preliminary results indicate electrostatic boosting may be capable of reducing particulate emissions up to 80% by inserting the appropriate fuel injector.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 91
Author(s):  
Adrian Schlottke ◽  
Bernhard Weigand

Two-phase flow in gas turbine compressors occurs, for example, at heavy rain flight condition or at high-fogging in stationary gas turbines. The liquid dynamic processes are independent of the application. An overview on the processes and their approach in literature is given. The focus of this study lies on the experimental investigation of the trailing edge disintegration. In the experiments, shadowgraphy is used to observe the disintegration of a single liquid rivulet with constant liquid mass flow rate at the edge of a thin plate at different air flow velocities. A two side view enables calculating droplet characteristics with high accuracy. The results show the asymptotic behavior of the ejected mean droplet diameters and the disintegration period. Furthermore, it gives a detailed insight into the droplet diameter distribution and the spreading of the droplets perpendicular to the air flow.


1997 ◽  
Vol 119 (1) ◽  
pp. 34-44 ◽  
Author(s):  
N. K. Rizk ◽  
J. S. Chin ◽  
M. K. Razdan

Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A two-dimensional fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the airassist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on the partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near-critical evaporation. The presents investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel-rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon (UHC) and carbon monoxide (CO) in atomizer flowfield, information that could support the effort to reduce emission levels of gas turbine combustors.


Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
Oanh Nguyen ◽  
Scott Samuelsen

In view of increasingly stringent NOx emissions regulations on stationary gas turbines, lean combustion offers an attractive option to reduce reaction temperatures and thereby decrease NOx production. Under lean operation, however, the reaction is vulnerable to blowout. It is herein postulated that pilot hydrogen dopant injection, discretely located, can enhance the lean blowout performance without sacrificing overall performance. The present study addresses this hypothesis in a research combustor assembly, operated at atmospheric pressure, and fired on natural gas using rapid mixing injection, typical of commercial units. Five hydrogen injector scenarios are investigated. The results show that (1) pilot hydrogen dopant injection, discretely located, leads to improved lean blowout performance and (2) the location of discrete injection has a significant impact on the effectiveness of the doping strategy.


Author(s):  
W. S. Cheung ◽  
G. J. M. Sims ◽  
R. W. Copplestone ◽  
J. R. Tilston ◽  
C. W. Wilson ◽  
...  

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. A flame transfer function describes the change in the rate of heat release in response to perturbations in the inlet flow as a function of frequency. It is a quantitative assessment of the susceptibility of combustion to disturbances. The resulting fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. Flame transfer functions for LPP combustion are poorly understood at present but are crucial for predicting combustion oscillations. This paper describes an experiment designed to measure the flame transfer function of a simple combustor incorporating realistic components. Tests were conducted initially on this combustor at atmospheric pressure (1.2 bar and 550 K) to make an early demonstration of the combustion system. The test rig consisted of a plenum chamber with an inline siren, followed by a single LPP premixer/duct and a combustion chamber with a silencer to prevent natural instabilities. The siren was used to induce variable frequency pressure/acoustic signals into the air approaching the combustor. Both unsteady pressure and heat release measurements were undertaken. There was good coherence between the pressure and heat release signals. At each test frequency, two unsteady pressure measurements in the plenum were used to calculate the acoustic waves in this chamber and hence estimate the mass-flow perturbation at the fuel injection point inside the LPP duct. The flame transfer function relating the heat release perturbation to this mass flow was found as a function of frequency. The same combustor hardware and associated instrumentation were then used for the high pressure (15 bar and 800 K) tests. Flame transfer function measurements were taken at three combustion conditions that simulated the staging point conditions (Idle, Approach and Take-off) of a large turbofan gas turbine. There was good coherence between pressure and heat release signals at Idle, indicating a close relationship between acoustic and heat release processes. Problems were encountered at high frequencies for the Approach and Take-off conditions, but the flame transfer function for the Idle case had very good qualitative agreement with the atmospheric-pressure tests. The flame transfer functions calculated here could be used directly for predicting combustion oscillations in gas turbine using the same LPP duct at the same operating conditions. More importantly they can guide work to produce a general analytical model.


2021 ◽  
Author(s):  
Austin Matthews ◽  
Anna Cobb ◽  
Subodh Adhikari ◽  
David Wu ◽  
Tim Lieuwen ◽  
...  

Abstract Understanding thermoacoustic instabilities is essential for the reliable operation of gas turbine engines. To complicate this understanding, the extreme sensitivity of gas turbine combustors can lead to instability characteristics that differ across a fleet. The capability to monitor flame transfer functions in fielded engines would provide valuable data to improve this understanding and aid in gas turbine operability from R&D to field tuning. This paper presents a new experimental facility used to analyze performance of full-scale gas turbine fuel injector hardware at elevated pressure and temperature. It features a liquid cooled, fiber-coupled probe that provides direct optical access to the heat release zone for high-speed chemiluminescence measurements. The probe was designed with fielded applications in mind. In addition, the combustion chamber includes an acoustic sensor array and a large objective window for verification of the probe using high-speed chemiluminescence imaging. This work experimentally demonstrates the new setup under scaled engine conditions, with a focus on operational zones that yield interesting acoustic tones. Results include a demonstration of the probe, preliminary analysis of acoustic and high speed chemiluminescence data, and high speed chemiluminescence imaging. The novelty of this paper is the deployment of a new test platform that incorporates full-scale engine hardware and provides the ability to directly compare acoustic and heat release response in a high-temperature, high-pressure environment to determine the flame transfer functions. This work is a stepping-stone towards the development of an on-line flame transfer function measurement technique for production engines in the field.


Sign in / Sign up

Export Citation Format

Share Document