Numerical Investigation of the Heat Transfer and Flow Phenomena in an IP Steam Turbine in Warm-Keeping Operation With Hot Air

Author(s):  
Dennis Toebben ◽  
Piotr Łuczyński ◽  
Mathias Diefenthal ◽  
Manfred Wirsum ◽  
Stefan Reitschmidt ◽  
...  

Nowadays, steam turbines in conventional power plants deal with an increasing number of startups due to the high share of fluctuating power input of renewable generation. Thus, the development of new methods for flexibility improvements, such as reduction of the start-up time and its costs, have become more and more important. At the same time, fast start-up and flexible steam turbine operation increase the lifetime consumption and reduce the inspection intervals. One possible option to prevent these negative impacts of a flexible operation is to keep the steam turbine warm during a shut down and a startup. In order to do so, General Electric has developed a concept for warm-keeping respectively pre-warming of a high-pressure (HP) / intermediate-pressure (IP) steam turbine with hot air: After a certain cool-down phase, air is passed through the turbine while the turbine is rotated by the turning engine. The flow and the rotational direction can be inverted to optimize the warming operation. In order to fulfill the requirements of high flexibility in combination with reduced costs and thermal stresses during the start-up, a detailed investigation of the dominant heat transfer effects and the corresponding flow structure is necessary: Complex numerical approaches, such as Conjugate Heat Transfer (CHT), can provide this corresponding information and help to understand the physical impact of the flow phenomena. The aim of the present work is thus to understand the predominant heat transport phenomena in warm-keeping operation and to gain detailed heat transfer coefficients within the flow channel for blade, vane and shrouds. A multitude of steady-state simulations were performed to investigate the different warm-keeping operation points. Data from literature was recomputed in good agreement to qualitatively validate the numerical model in windage operation. Furthermore, the steady-state simulations were compared with transient Computational Fluid Dynamics (CFD) simulations to verify that the flow in warming operation can be simulated with a steady-state case. The transient calculations confirm the steady-state results. A variation of the mass flow rate and the rotational speed was conducted to calculate a characteristic map of heat transfer coefficients. The Conjugate Heat Transfer simulations provide an insight into the flow structure and offer a comparison with the flow phenomena in conventional operation. In addition, the impact of the flow phenomena on the local heat transfer was investigated.

Author(s):  
Dominik Born ◽  
Kurt Heiniger ◽  
Giorgio Zanazzi ◽  
Thomas Mokulys ◽  
Patrick Grossmann ◽  
...  

Cyclic lifetime assessment of steam turbine components has become increasingly important for several reasons. In the last years and decades the nominal steam temperatures and pressures were further increased to improve cycle efficiency. In addition, the market constantly demands increased flexibility and reliability for given lifetime exploiting the limits of the existing materials. A number of components in a steam turbine are critical in the focus of lifetime predictions such as the rotor and front stage blades, the inner casing and the area of labyrinth seals connected to the life steam. For this reason, it becomes extremely important to rely on accurate predictions of local temperatures and heat-transfer-coefficients of components in the steam path. The content of this paper aims on the validation of the numerical tools based on CHT (conjugate heat transfer) approach against experimental data of a labyrinth seal regarding discharge coefficients and measured heat transfer coefficients. Furthermore, a real steam turbine application has been optimized in design and operation to improve lifetime. The improved prediction of temperature and heat transfer allowed novel designs of labyrinth seals of a single flow high-pressure turbine and a combined intermediate and low-pressure turbine, which helped to strongly increase the component lifetime of a steam turbine rotor by more than 100%.


Author(s):  
Tom Heuer ◽  
Bertold Engels ◽  
Patrick Wollscheid

One of the most challenging tasks in designing a turbocharger is to guarantee a sufficient lifetime. Turbine housings are critical parts due to their very complex geometry and consequently complicated temperature and stress distributions. Therefore, high thermal loads as well as thermo-mechanical fatigue have to be considered. Calculating the thermal stress distribution in the turbine housing, steady state and transient, can indicate the regions of crack initiation. From this information selective design improvements can be deduced to increase the component lifetime. But the quality of the stress analysis is strongly dependent on a reliable temperature distribution. Taking into account the interdependency of heat transfer between solid walls and fluid, conjugate heat transfer (CHT) calculations can provide temperature data of high accuracy. Since a transient CHT-calculation is still beyond state of the art, a new approach has been developed. Two steady state CHT-calculations serve to determine heat transfer coefficients at engine brake and full load. Beginning with the engine brake temperature distribution, it is assumed that the gas temperature and the mass flow change immediately. Therefore heat transfer coefficients at full load serve as a boundary condition for a subsequent transient solid body calculation simulating the acceleration process. For the deceleration process the full load temperature field is combined with the engine brake heat transfer coefficients. Monitor points give information about the steepest temperature gradients in the material. At discrete time points a steady state stress analysis has to be performed to detect the regions of highest loads. This subsequent step is essential because in a complex geometry like in a spiral housing with a divider and regionally different wall thicknesses, the stress maxima are not necessarily located at the same places as the temperature peaks. For the two steady state CHT-calculations the turbine wheel has been included in order to consider a realistic flow field. Compared to a transient calculation the degree of abstraction is as low as possible because the assumed frozen rotor boundary condition takes into account centrifugal and coriolis forces. This paper demonstrates the calculation procedure considering a twin-entry turbine housing with an integrated manifold designed for a truck application. The computational results are in excellent agreement with thermal shock test data. A second loop with an improved design proves the success of the method.


2019 ◽  
Vol 17 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Chaitanya Dosapati ◽  
Mohan Jagadeesh Kumar Mandapati

Purpose Solar energy applications are limited because of its intermittent and discontinuous availability with respect to time. Hence, solar energy thermal conversion systems need integration with thermal storage units (TSUs) to use solar energy in off sunshine hours. This paper aims to perform thermal analysis of a solar air heater (SAH) integrated with a phase change material (PCM)-based TSU to supply hot air during night period. Design/methodology/approach An experimental setup with TSU as main component was prepared with SAH at its upward side, food chamber at its downward side as subcomponents. In TSU, paraffin wax was used as thermal energy storage material. Mass flow rate of air considered as an input parameter in the experiment. Two different absorber plates, namely, plane and ribbed absorber plates were used for the experimentation. Each day for a fixed mass flow of air, observations were made during charging and discharging of PCM. Findings Nusselt number and convection heat transfer coefficients were analytically calculated by considering flow through TSU as external flow over bank of tubes in a rectangular duct. A temperature drop of around 7-8°C during charging of PCM and temperature rise of around 4-5°C during discharging of PCM was observed from the experimental results. The average practical efficiency of TSU with ribbed absorber plate SAH during charging and discharging of PCM was 22 and 6 per cent, respectively, higher than that of TSU with plane absorber plate SAH. Research limitations/implications There are no limitations for research on SAH integrated with TSU. Different PCM including paraffin wax, Glauber’s salt, salt hydrates and water are used for thermal storage. Only limitation is lower efficiency of SAH integrated with TSU because of lower heat transfer coefficients with air as working medium. If it can improve heat transfer coefficients of air then heat transfer rates with these units will be higher. Practical implications There are no practical limitations for research on SAH integrated with TSU. Sophisticated instrumentation is needed to measure flow rates, temperatures and pressure variations of air. Social implications In poultry farms during night, chicks cannot survive at cold climatic conditions. Hence, hot air should be supplied to poultry farms whenever the atmospheric temperature drops. It is proposed that, in combination with TSUs, heat produced by SAH is stored in day time in the form of either sensible or latent heat and is retrieved to provide hot air in the night times. This will reduce total operating costs in poultry farms. Originality/value Conventionally, people are producing hot air by combusting coal in poultry forms. This cost around Rs. 75,000 per month for a batch of 225 to 250 chicks in a poultry form. Hot air could be produced economically during off sunshine hours from SAH integrated with TSU compared to the conventional method of coal burning. Present experimental investigations conducted to fill the literature gap in this area of research and to design a SAH integrated with TSU to produce hot air for poultry forms.


Author(s):  
Aneesh Sridhar Vadvadgi ◽  
Savas Yavuzkurt

The present study deals with the numerical modeling of the turbulent flow in a rotor-stator cavity with or without imposed through flow with heat transfer. The commercial finite volume based solver, ANSYS/FLUENT is used to numerically simulate the problem. A conjugate heat transfer approach is used. The study specifically deals with the calculation of the heat transfer coefficients and the temperatures at the disk surfaces. Results are compared with data where available. Conventional approaches which use boundary conditions such as constant wall temperature or constant heat flux in order to calculate the heat transfer coefficients which later are used to calculate disk temperatures can introduce significant errors in the results. The conjugate heat transfer approach can resolve this to a good extent. It includes the effect of variable surface temperature on heat transfer coefficients. Further it is easier to specify more realistic boundary conditions in a conjugate approach since solid and the flow heat transfer problems are solved simultaneously. However this approach incurs a higher computational cost. In this study, the configuration chosen is a simple rotor and stator system with a stationary and heated stator and a rotor. The aspect ratio is kept small (around 0.1). The flow and heat transfer characteristics are obtained for a rotational Reynolds number of around 106. The simulation is performed using the Reynolds Stress Model (RSM). The computational model is first validated against experimental data available in the literature. Studies have been carried out to calculate the disk temperatures using conventional non-conjugate and full conjugate approaches. It has been found that the difference between the disk temperatures for conjugate and non-conjugate computations is 5 K for the low temperature and 30 K for the high temperature boundary conditions. These represent differences of 1% and 2% from the respective stator surface temperatures. Even at low temperatures, the Nusselt numbers at the disk surface show a difference of 5% between the conjugate and non-conjugate computations, and far higher at higher temperatures.


Author(s):  
Ting Wang ◽  
Mingjie Lin ◽  
Ronald S. Bunker

Experimental studies on heat transfer and flow structure in confined impingement jets were performed. The objective of this study was to investigate the detailed heat transfer coefficient distribution on the jet impingement target surface and flow structure in the confined cavity. The distribution of heat transfer coefficients on the target surface was obtained by employing the transient liquid crystal method coupled with a 3-D inverse transient conduction scheme under Reynolds number ranging from 1039 to 5175. The results show that the average heat transfer coefficients increased linearly with the Reynolds number as Nu = 0.00304 Pr0.42Re. The effects of cross flow on heat transfer were investigated. The flow structure were analyzed to gain insight into convective heat transfer behavior.


Author(s):  
Reby Roy ◽  
B. V. S. S. S. Prasad ◽  
S. Srinivasa Murthy

The conjugate heat transfer in a stationary cylindrical cavity with a rotating disk and fluid through-flow is analysed at various rotational speeds ranging from 10000 to 50000 rpm by using a finite volume commercial code. The numerical model and code are validated for a problem, which involves rotation and fluid through-flow. A reduction of the thermal boundary layer thickness and increase in the heat transfer coefficients are observed with increase in the rotational speed. Marked differences are noticed between the Nusselt numbers obtained from the conjugate and constant temperature analyses.


1993 ◽  
Vol 115 (2) ◽  
pp. 311-318 ◽  
Author(s):  
C. Camci ◽  
K. Kim ◽  
S. A. Hippensteele ◽  
P. E. Poinsatte

Accurate determination of convective heat transfer coefficients on complex curved surfaces is essential in the aerothermal design and analysis of propulsion system components. The heat transfer surfaces are geometrically very complex in most of the propulsion applications. This study focuses on the evaluation of a hue capturing technique for the heat transfer interpretation of liquid crystal images from a complex curved heat transfer surface. Impulsively starting heat transfer experiments in a square to rectangular transition duct are reported. The present technique is different from existing steady-state hue capturing studies. A real-time hue conversion process on a complex curved surface is adopted for a transient heat transfer technique with high spatial resolution. The study also focuses on the use of encapsulated liquid crystals with narrow color band in contrast to previous steady-state hue based techniques using wide band liquid crystals. Using a narrow band crystal improves the accuracy of the heat transfer technique. Estimated uncertainty for the heat transfer coefficient from the technique is about 5.9 percent. A complete heat transfer map of the bottom surface was possible using only seven liquid crystal image frames out of the 97 available frames during the transient experiment. Significant variations of heat transfer coefficients are quantitatively visualized on the curved surfaces of the transition duct.


1997 ◽  
Vol 119 (2) ◽  
pp. 302-309 ◽  
Author(s):  
N. Abuaf ◽  
R. Bunker ◽  
C. P. Lee

A warm (315°C) wind tunnel test facility equipped with a linear cascade of film cooled vane airfoils was used in the simultaneous determination of the local gas side heat transfer coefficients and the adiabatic film cooling effectiveness. The test rig can be operated in either a steady-state or a transient mode. The steady-state operation provides adiabatic film cooling effectiveness values while the transient mode generates data for the determination of the local heat transfer coefficients from the temperature–time variations and of the film effectiveness from the steady wall temperatures within the same aerothermal environment. The linear cascade consists of five airfoils. The 14 percent cascade inlet free-stream turbulence intensity is generated by a perforated plate, positioned upstream of the airfoil leading edge. For the first transient tests, five cylinders having roughly the same blockage as the initial 20 percent axial chord of the airfoils were used. The cylinder stagnation point heat transfer coefficients compare well with values calculated from correlations. Static pressure distributions measured over an instrumented airfoil agree with inviscid predictions. Heat transfer coefficients and adiabatic film cooling effectiveness results were obtained with a smooth airfoil having three separate film injection locations, two along the suction side, and the third one covering the leading edge showerhead region. Near the film injection locations, the heat transfer coefficients increase with the blowing film. At the termination of the film cooled airfoil tests, the film holes were plugged and heat transfer tests were conducted with non-film cooled airfoils. These results agree with boundary layer code predictions.


Author(s):  
Dieter Bohn ◽  
Christian Betcher ◽  
Karsten Kusterer ◽  
Kristof Weidtmann

Abstract As a result of an ever-increasing share of volatile renewable energies on the world wide power generation, conventional thermal power plants face high technical challenges in terms of operational flexibility. Consequently, the number of startups and shutdowns grows, causing high thermal stresses in the thick-walled components and thus reduces lifetime and increases product costs. To fulfill the lifetime requirements, an accurate prediction and determination of the metal temperature distribution inside these components is crucial. Therefore, boundary conditions in terms of local fluid temperatures as well as heat transfer coefficients with sufficient accuracy are required. As modern numerical modeling approaches, like 3D-Conjugate-Heat-Transfer (CHT), provide these thermal conditions with a huge calculation expense for multistage turbines, simplified methods are inevitable. Analytical heat transfer correlations are thus the state-of-the-art approach to capture the heat transport phenomena and to optimize and design high efficient startup curves for flexible power market. The objective of this paper is to understand the predominant basic heat transfer mechanisms such as conduction, convection and radiation during a startup of an IP steam turbine stage. Convective heat transport is described by means of heat transfer coefficients as a function of the most relevant dimensionless, aero-thermal operating parameters, considering predominant flow structures. Based on steady-state and transient CHT-simulations the heat transfer coefficients are derived during startup procedure and compared to analytical correlations from the literature, which allow the calculation of the heat exchange for a whole multistage in an economic and time-saving way. The simulations point out that the local convective heat transfer coefficient generally increases with increasing axial and circumferential Reynolds’ number and is mostly influenced by vortex systems such as passage and horseshoe vortices. The heat transfer coefficients at vane, blade, hub and labyrinth-sealing surfaces can be modeled with a high accuracy using a linear relation with respect to the total Reynolds’ number. The comparison illustrates that the analytical correlations underestimate the convective heat transfer by approx. 40% on average. Results show that special correlation-based approaches from the literature are a particularly suitable and efficient procedure to predict the heat transfer within steam turbines in the thermal design process. Overall, the computational effort can be significantly reduced by applying analytical correlations while maintaining a satisfactory accuracy.


1999 ◽  
Vol 122 (4) ◽  
pp. 678-690 ◽  
Author(s):  
L. D. Clark ◽  
K. Davey ◽  
I. Rosindale ◽  
S. Hinduja

A mesh partitioning strategy is presented which facilitates the application of boundary conditions to irregular shaped cooling channels in the pressure diecasting process. The strategy is used to partition a boundary element mesh, but can also be applied to the surface of a cooling channel bounded by a finite element mesh. The partitioning of the mesh into a series of element packs enables a one-dimensional flow model to be applied to the coolant. The flow model is used in conjunction with a steady-state thermal model which initially assumes that no boiling is taking place on the die/coolant interface. Values of bulk temperature, pressure, and velocity in the coolant are thus ascertained. This information, together with die temperatures, is then used in empirical relationships which model the various heat transfer mechanisms, including nucleate and transitional film boiling, between die and coolant. Effective heat transfer coefficients are calculated and applied at the die/coolant interface. The steady-state thermal code and the empirical boiling model are then used iteratively until stable values for the effective heat transfer coefficients are obtained. The models are tested by casting a small thin component using a die with conventional cooling channels and also using a novel die with irregular shaped cooling channels running on a hot chamber proprietary die casting machine. Simulation results are shown and experimental results using the hot chamber pressure die casting machine are reported. [S1087-1357(00)02302-9]


Sign in / Sign up

Export Citation Format

Share Document