A Novel Test Rig for Assessing Advanced Rotor Blade Cooling Concepts, Measurement Technique and First Results

Author(s):  
Maximilian Elfner ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer ◽  
Knut Lehmann

This paper presents a new approach for assessing rotor blade cooling concepts. A new test rig has been designed, built and commissioned, allowing fast comparison of different cooling schemes as well as absolute surface temperature measurements for different cooling concepts. By scaling the test specimen, full aerothermal similarity was achieved at high measurement accuracy and resolution. This similarity however poses high demand on the employed measurement techniques. Surface temperature (and thus cooling effectiveness) is measured using high resolution, high dynamic range infrared thermography with an improved calibration method for in-situ radiation correction. Furthermore, an improved image evaluation algorithm is presented, allowing angle-of-view dependent emissivity correction and full 3D-evaluation of image data. Those improvements enable the measurement on strongly cooled and strongly curved surfaces, and thus the use of scaled rotor blades with true geometry. First results are presented comparing total cooling effectiveness of a conventionally cooled blade with internal ribs to the effectiveness of an internal swirl design blade. They show the feasibility of the measurements and the importance of the presented correction method.

Author(s):  
Maximilian Elfner ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer ◽  
Knut Lehmann

This paper presents extensive results of an ongoing study on internal blade cooling concepts. A new test rig has been designed, built and commissioned, allowing fast comparison of different cooling schemes as well as surface temperature measurements for different cooling concepts. By scaling the test specimen, full aerothermal similarity was achieved at high measurement accuracy and resolution. Surface temperature (and thus total cooling effectiveness) is measured using high resolution, high dynamic range infrared thermography with an improved data evaluation method. Results for a conventional multi-pass cooling design are presented as a baseline case. Several new internal cooling concepts are then assessed for their relative cooling performance to the conventional design as well as their absolute cooling effectiveness. Those designs include various internal swirl concepts (cyclone cooling). The results show that great care has to be taken when designing advanced internal cooling concepts with complex flow structures, since the effects of internal crossflow, internal pressure loss, internal heat transfer coefficient, and film cooling effectiveness strongly interact with each other and the hot gas flow and hence affect the resulting total cooling effectiveness.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
A. de la Loma ◽  
G. Paniagua ◽  
D. Verrastro ◽  
P. Adami

This paper reports the external convective heat transfer distribution of a modern single-stage transonic turbine together with the physical interpretation of the different shock interaction mechanisms. The measurements have been performed in the compression tube test rig of the von Karman Institute using single- and double-layered thin film gauges. The three pressure ratios tested are representative of those encountered in actual aeroengines, with M2,is ranging from 1.07 to 1.25 and a Reynolds number of about 106. Three different rotor blade heights (15%, 50%, and 85%) and the stator blade at midspan have been investigated. The measurements highlight the destabilizing effect of the vane left-running shock on the rotor boundary layer. The stator unsteady heat transfer is dominated by the fluctuating right-running vane trailing edge shock at the blade passing frequency.


Author(s):  
Firat Kiyici ◽  
Ahmet Topal ◽  
Ender Hepkaya ◽  
Sinan Inanli

A numerical study, based on experimental work of Inanli et al. [1] is conducted to understand the heat transfer characteristics of film cooled test plates that represent the gas turbine combustor liner cooling system. Film cooling tests are conducted by six different slot geometries and they are scaled-up model of real combustor liner. Three different blowing ratios are applied to six different geometries and surface cooling effectiveness is determined for each test condition by measuring the surface temperature distribution. Effects of geometrical and flow parameters on cooling effectiveness are investigated. In this study, Conjugate Heat Transfer (CHT) simulations are performed with different turbulence models. Effect of the turbulent Prandtl Number is also investigated in terms of heat transfer distribution along the measurement surface. For this purpose, turbulent Prandtl number is calculated with a correlation as a function of local surface temperature gradient and its effect also compared with the constant turbulent Prandtl numbers. Good agreement is obtained with two-layered k–ϵ with modified Turbulent Prandtl number.


Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometrical parameters like blowing angle and hole pitch as well as the flow parameters blowing rate and density ratio were varied in a wide range emphasizing on engine relevant conditions. An IR-thermography technique was used to perform local measurements of the surface temperature field. A spatial resolution of up to 7 data points per hole diameter extending up to 80 hole diameters downstream of the ejection location was achieved. Since all technical surface materials have a finite thermoconductivity, no ideal adiabatic conditions could be established. Therefore, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the backside of the testplate and remnant heat flux within the testplate in lateral and streamwise direction were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD-codes predicting discrete hole film cooling.


2013 ◽  
Vol 6 (2) ◽  
pp. 3013-3057
Author(s):  
B. Torres ◽  
C. Toledano ◽  
A. Berjón ◽  
D. Fuertes ◽  
V. Molina ◽  
...  

Abstract. Sensitivity studies indicate that among the different error sources of ground-based sky radiometer observations, the pointing error has an important role in the correct retrieving of aerosol properties, being specially critical for the characterization of desert dust aerosol. The present work analyzes the first results of two new measurements, cross and matrix, specifically designed for an evaluation of the pointing error in the standard instrument of the Aerosol Robotic Network, the Cimel CE-318 sun-photometer. The first part of the analysis contains a preliminary study whose results conclude on the need of a sun movement correction for the correct evaluation of the pointing error from both new measurements. Once this correction is applied, both measurements show an equivalent behavior with differences under 0.01° in the evaluation of the pointing error. The second part of the analysis includes the incorporation of the cross scenario in the AERONET routine measurement protocol in order to monitor the pointing error in field instruments. Using the data collected for more than a year, the pointing error is evaluated on 7 sun-photometers belonging to AERONET-Europe. The pointing error values registered are generally smaller than 0.01° though in some instruments values up to 0.03° have been observed. Moreover, the pointing error evaluation has shown that this measure can be used to detect mechanical problems in the robots or dirtiness in the quadrant detector due to the stable behavior of the values against time and solar zenith angle. At the same time, the matrix scenario can be used to derive the value of the field of view. The methodology implemented and the characterization of five sun-photometers is presented in the last part of the study. To validate the method, a comparison with field of view values obtained from the vicarious calibration method was developed. The differences between both techniques are under 3%.


2019 ◽  
Vol 39 (6) ◽  
pp. 0612003
Author(s):  
马冬晓 Dongxiao Ma ◽  
汪家春 Jiachun Wang ◽  
陈宗胜 Zongsheng Chen ◽  
王冰 Bing Wang ◽  
刘洋 Yang Liu

2006 ◽  
Vol 128 (9) ◽  
pp. 879-888 ◽  
Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions are measured on the leading edge of a rotating gas turbine blade with two rows (pressure-side row and suction-side row from the stagnation line) of holes aligned to the radial axis using the pressure sensitive paint (PSP) technique. Film cooling effectiveness distributions are obtained by comparing the difference of the measured oxygen concentration distributions with air and nitrogen as film cooling gas respectively and by applying the mass transfer analogy. Measurements are conducted on the first-stage rotor blade of a three-stage axial turbine at 2400rpm (positive off-design), 2550rpm (design), and 3000rpm (negative off-design), respectively. The effect of three blowing ratios is also studied. The blade Reynolds number based on the axial chord length and the exit velocity is 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and outlet Mach numbers are 0.1 and 0.3, respectively. The film cooling effectiveness distributions are presented along with discussions on the influence of rotational speed (off design incidence angle), blowing ratio, and upstream nozzle wakes around the leading edge region. Results show that rotation has a significant impact on the leading edge film cooling distributions with the average film cooling effectiveness in the leading edge region decreasing with an increase in the rotational speed (negative incidence angle).


Sign in / Sign up

Export Citation Format

Share Document