scholarly journals Erratum: “Analysis of the Performance of Plasma Actuators Under Low-Pressure Turbine Conditions Based on Experiments and URANS Simulations” [ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Volume 2A: Turbomachinery, Charlotte, North Carolina, USA, June 26–30, 2017, Conference Sponsors: International Gas Turbine Institute, ISBN: 978-0-7918-5078-7, Copyright © 2017 by ASME. Paper No. GT2017-64867, V02AT40A034; 15 pages; doi: 10.1115/GT2017-64867]

Author(s):  
D. S. Martínez ◽  
E. Pescini ◽  
F. Marra ◽  
M. G. De Giorgi ◽  
A. Ficarella

Abstract This erratum corrects errors that appeared in the paper “Analysis of the Performance of Plasma Actuators Under Low-Pressure Turbine Conditions Based on Experiments and URANS Simulations” which was published in Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Volume 2A: Turbomachinery, V02AT40A034, June 2017, GT2017-64867, doi: 10.1115/GT2017-64867.

Author(s):  
Mauricio Gutierrez Salas ◽  
Ronnie Bladh ◽  
Hans Mårtensson ◽  
Paul Petrie-Repar ◽  
Torsten Fransson ◽  
...  

This erratum corrects errors that appeared in the paper “Forced Response Analysis of a Mistuned Compressor Blisk Comparing Three Different Reduced Order Model Approaches” which was published in Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Volume 7A: Structures and Dynamics, V07AT32A030, June 2016, GT2016-57902, doi: 10.1115/GT2016-57902.


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


2014 ◽  
Vol 14 (5) ◽  
pp. 578-587 ◽  
Author(s):  
R. K. Mishra ◽  
Johney Thomas ◽  
K. Srinivasan ◽  
Vaishakhi Nandi ◽  
Raghavendra Bhat

Author(s):  
Tyler M. Pharris ◽  
Olivia E. Hirst ◽  
Kenneth W. Van Treuren

Current gas turbine engines experience a loss in performance due to the low Reynolds number flow in the low-pressure turbine. This low flow speed can result in separation of the air from the blade surface, reducing the efficiency of the engine. The Baylor University Cascade wind tunnel (BUC) is being used to study this flow separation. A cascade wind tunnel contains a row of turbine vanes that simulates a turbine wheel. The BUC is capable of simulating the environment seen by the low-pressure turbine at high altitudes by producing Reynolds numbers varying from 25,000 to 400,000. The L1A blade profile is currently being tested. Coefficient of pressure (Cp) plots show a less than 1% difference between surface pressure locations when comparing the most inboard and outboard test blades. This agreement demonstrates the flow uniformity in the tunnel. Cp plots also compared favorably to the literature, validating the BUC operation and providing insight into how Reynolds numbers and free stream turbulence intensity (FSTI) affect flow separation. The literature and this study showed the size and reattachment of the separation bubble was highly dependent on the FSTI for lower Reynolds numbers (25,000 to 200,000). This comparison also showed that the size of the separation bubble and the location was not heavily impacted by FSTI for Reynolds numbers above 200,000. Tests in the future will be conducted to determine the actual FSTI of the BUC. Once completely validated, future studies with the BUC may include use of particle image velocimetry (PIV) to visualize the flow, a gold foil steady state technique using liquid crystals to measure heat transfer, and a series of deposition tests using surface roughness (sandpaper or textured sprays) to measure performance loss under these conditions. The ultimate goal of this research is to improve blade design in the low pressure turbine for all commercial and military aircraft.


Sign in / Sign up

Export Citation Format

Share Document