Robust Design Optimization of a Steam Turbine Labyrinth Seal Based on Surrogate Models

Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Andreas Penkner ◽  
Christian Musch

This work presents a robust multi-objective optimization of a labyrinth seal used in power plants steam turbines. The conflicting objectives of this optimization are to minimize the mass flow and to minimize the total enthalpy increase in order to increase the performance and to reduce the temperature, which results in elevated component utilization. The focus should be the robustness aspect to be involved into the optimization. So that the final design is not only optimized for its deterministic values but also robust under its uncertainties. To achieve a robust and optimized design, surrogate models are trained and used to replace the computational fluid dynamic solver (CFD), so as to speed up the calculations. In contrast to most techniques used in literature, the robustness criteria are directly involved in the multi-objective optimization. This leads to a more robust Pareto front compared to a purely deterministic one. This method needs many design evaluations, which would be not effective, if a CFD solver were used.

Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Andreas Penkner ◽  
Simon Hecker ◽  
Christian Musch

Renewable energies are increasingly contributing to the overall volume of the electricity grid and demand besides high efficiency, greater flexibility of the conventional fossil power plants. To optimize these objectives, extensive CFD calculations are required in most cases. For example, transient CFD calculations are only rarely combined with an optimizer because of their high demand on computational resources and time. Surrogate models, which are mathematical methods to learn and approximate the relationship between input and output parameters, are a common way to solve these problems. Once they are trained, they can perform the evaluations within seconds and replace the expensive simulation. Of course, real calculations are still needed to generate the training data. Therefore, it is useful to apply efficient and sequentially extensible design plans. This paper presents a new surrogate model method, based on a deep neural network learning the non-stationary hyperparameters of combined Gaussian process covariance matrices. It is used to approximate the complex and time consuming transient CFD simulation of a combined high-intermediate pressure steam turbine double shell outer casing. To minimize the exergy loss, the exhaust geometry is optimized in a single and multi-objective optimization on the surrogate models. The multi-objective optimization also includes the uniform velocity distribution of the steam in different areas of the casing, to predict the thermal loading of the steam turbine inner casing and to avoid an imbalanced thermal loading. A sequential sampling approach combined with a sensitivity analysis is used to find the minimum number of samples needed to train the surrogate models in order to gain sufficient prediction quality. Additionally, the paper describes the initial geometry, its numerical setup and the required control mechanisms to avoid noisy designs, which might complicate the surrogate model training. There is also a comparison of the initial and chosen optimal designs.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-26
Author(s):  
Faramarz Khosravi ◽  
Alexander Rass ◽  
Jürgen Teich

Real-world problems typically require the simultaneous optimization of multiple, often conflicting objectives. Many of these multi-objective optimization problems are characterized by wide ranges of uncertainties in their decision variables or objective functions. To cope with such uncertainties, stochastic and robust optimization techniques are widely studied aiming to distinguish candidate solutions with uncertain objectives specified by confidence intervals, probability distributions, sampled data, or uncertainty sets. In this scope, this article first introduces a novel empirical approach for the comparison of candidate solutions with uncertain objectives that can follow arbitrary distributions. The comparison is performed through accurate and efficient calculations of the probability that one solution dominates the other in terms of each uncertain objective. Second, such an operator can be flexibly used and combined with many existing multi-objective optimization frameworks and techniques by just substituting their standard comparison operator, thus easily enabling the Pareto front optimization of problems with multiple uncertain objectives. Third, a new benchmark for evaluating uncertainty-aware optimization techniques is introduced by incorporating different types of uncertainties into a well-known benchmark for multi-objective optimization problems. Fourth, the new comparison operator and benchmark suite are integrated into an existing multi-objective optimization framework that features a selection of multi-objective optimization problems and algorithms. Fifth, the efficiency in terms of performance and execution time of the proposed comparison operator is evaluated on the introduced uncertainty benchmark. Finally, statistical tests are applied giving evidence of the superiority of the new comparison operator in terms of \epsilon -dominance and attainment surfaces in comparison to previously proposed approaches.


2014 ◽  
Vol 494-495 ◽  
pp. 1715-1718
Author(s):  
Gui Li Yuan ◽  
Tong Yu ◽  
Juan Du

The classic multi-objective optimization method of sub goals multiplication and division theory is applied to solve optimal load distribution problem in thermal power plants. A multi-objective optimization model is built which comprehensively reflects the economy, environmental protection and speediness. The proposed model effectively avoids the target normalization and weights determination existing in the process of changing the multi-objective optimization problem into a single objective optimization problem. Since genetic algorithm (GA) has the drawback of falling into local optimum, adaptive immune vaccines algorithm (AIVA) is applied to optimize the constructed model and the results are compared with that optimized by genetic algorithm. Simulation shows this method can complete multi-objective optimal load distribution quickly and efficiently.


A test blueprint/test template, also known as the table of specifications, represents the structure of a test. It has been highly recommended in assessment textbook to carry out the preparation of a test with a test blueprint. This chapter focuses on modeling a dynamic test paper template using multi-objective optimization algorithm and makes use of the template in dynamic generation of examination test paper. Multi-objective optimization-based models are realistic models for many complex optimization problems. Modeling a dynamic test paper template, similar to many real-life problems, includes solving multiple conflicting objectives satisfying the template specifications.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 839
Author(s):  
Ibrahim M. Abu-Reesh

Microbial fuel cells (MFCs) are a promising technology for bioenergy generation and wastewater treatment. Various parameters affect the performance of dual-chamber MFCs, such as substrate flow rate and concentration. Performance can be assessed by power density ( PD ), current density ( CD ) production, or substrate removal efficiency ( SRE ). In this study, a mathematical model-based optimization was used to optimize the performance of an MFC using single- and multi-objective optimization (MOO) methods. Matlab’s fmincon and fminimax functions were used to solve the nonlinear constrained equations for the single- and multi-objective optimization, respectively. The fminimax method minimizes the worst-case of the two conflicting objective functions. The single-objective optimization revealed that the maximum PD ,   CD , and SRE were 2.04 W/m2, 11.08 A/m2, and 73.6%, respectively. The substrate concentration and flow rate significantly impacted the performance of the MFC. Pareto-optimal solutions were generated using the weighted sum method for maximizing the two conflicting objectives of PD and CD in addition to PD and SRE   simultaneously. The fminimax method for maximizing PD and CD showed that the compromise solution was to operate the MFC at maximum PD conditions. The model-based optimization proved to be a fast and low-cost optimization method for MFCs and it provided a better understanding of the factors affecting an MFC’s performance. The MOO provided Pareto-optimal solutions with multiple choices for practical applications depending on the purpose of using the MFCs.


Author(s):  
Huizhuo Cao ◽  
Xuemei Li ◽  
Vikrant Vaze ◽  
Xueyan Li

Multi-objective pricing of high-speed rail (HSR) passenger fares becomes a challenge when the HSR operator needs to deal with multiple conflicting objectives. Although many studies have tackled the challenge of calculating the optimal fares over railway networks, none of them focused on characterizing the trade-offs between multiple objectives under multi-modal competition. We formulate the multi-objective HSR fare optimization problem over a linear network by introducing the epsilon-constraint method within a bi-level programming model and develop an iterative algorithm to solve this model. This is the first HSR pricing study to use an epsilon-constraint methodology. We obtain two single-objective solutions and four multi-objective solutions and compare them on a variety of metrics. We also derive the Pareto frontier between the objectives of profit and passenger welfare to enable the operator to choose the best trade-off. Our results based on computational experiments with Beijing–Shanghai regional network provide several new insights. First, we find that small changes in fares can lead to a significant improvement in passenger welfare with no reduction in profitability under multi-objective optimization. Second, multi-objective optimization solutions show considerable improvements over the single-objective optimization solutions. Third, Pareto frontier enables decision-makers to make more informed decisions about choosing the best trade-offs. Overall, the explicit modeling of multiple objectives leads to better pricing solutions, which have the potential to guide pricing decisions for the HSR operators.


2016 ◽  
Vol 180 ◽  
pp. 55-67 ◽  
Author(s):  
Lucas M. Pavelski ◽  
Myriam R. Delgado ◽  
Carolina P. Almeida ◽  
Richard A. Gonçalves ◽  
Sandra M. Venske

Author(s):  
A. Garg ◽  
Cheng Liu ◽  
A. K. Jishnu ◽  
Liang Gao ◽  
My Loan Le Phung ◽  
...  

Abstract The efficient design of battery thermal management systems (BTMSs) plays an important role in enhancing the performance, life, and safety of electric vehicles (EVs). This paper aims at designing and optimizing cold plate-based liquid cooling BTMS. Pitch sizes of channels, inlet velocity, and inlet temperature of the outermost channel are considered as design parameters. Evaluating the influence and optimization of design parameters by repeated computational fluid dynamics calculations is time consuming. To tackle this, the effect of design parameters is studied by using surrogate modeling. Optimized design variables should ensure a perfect balance between certain conflicting goals, namely, cooling efficiency, BTMS power consumption (parasitic power), and size of the battery. Therefore, the optimization problem is decoupled into hydrodynamic performance, thermodynamic performance, and mechanical structure performance. The optimal design involving multiple conflicting objectives in BTMS is solved by adopting the Thompson sampling efficient multi-objective optimization algorithm. The results obtained are as follows. The optimized average battery temperature after optimization decreased from 319.86 K to 319.2759 K by 0.18%. The standard deviation of battery temperature decreased from 5.3347 K to 5.2618 K by 1.37%. The system pressure drop decreased from 7.3211 Pa to 3.3838 Pa by 53.78%. The performance of the optimized battery cooling system has been significantly improved.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 391 ◽  
Author(s):  
Chuankun Liu ◽  
Yue Hu ◽  
Ting Yu ◽  
Qiang Xu ◽  
Chaoqing Liu ◽  
...  

The tradeoff between engineering costs and water treatment of the artificial lake system has a significant effect on engineering decision-making. However, decision-makers have little access to scientific tools to balance engineering costs against corresponding water treatment. In this study, a framework integrating numerical modeling, surrogate models and multi-objective optimization is proposed. This framework was applied to a practical case in Chengdu, China. A water quality model (MIKE21) was developed, providing training datasets for surrogate modeling. The Artificial Neural Network (ANN) and Support Vector Machine (SVM) were utilized for training surrogate models. Both surrogate models were validated with the coefficient of determinations (R2) greater than 0.98. SVM performed more stably with limited training data sizes while ANN demonstrated higher accuracies with more training samples. The multi-objective optimization model was developed using the genetic algorithm, with targets of reducing both engineering costs and target aquatic pollutant concentrations. An optimal target concentration after treatment was identified, characterized by the ammonia concentration (1.3 mg/L) in the artificial lake. Furthermore, scenarios with varying water quality in the upstream river were evaluated. Given the assumption of deteriorated upstream water quality in the future, the optimal proportion of pre-treatment in the total costs is increasing.


Sign in / Sign up

Export Citation Format

Share Document