A Review of Impingement Jet Cooling in Combustor Liner

Author(s):  
Rong Xie ◽  
Hao Wang ◽  
Baopeng Xu ◽  
Wei Wang

Impingement jet cooling is a promising cooling method in modern dry low emission combustor because of its high local heat transfer coefficient. This paper investigates the recent research progress on impingement jet cooling in combustor liner. Firstly, the different flow characteristics in the different impingement jet flow regions are described. Then, the factors influencing impingement jet cooling are discussed, including flow factor and geometry factor. The researches in a large range of flow parameters, including Reynolds number, Mach number and temperature ratio, are reported. The researches in different geometry parameters, such as nozzle geometry, nozzle-to-nozzle spacing, nozzle-to-target distance and inclined angle, are presented. Next, the crossflow effect in array impingement jet is considered. Due to the crossflow decreases the heat transfer performance, varieties of structures which can restrict the crossflow and improve the channel flow are introduced. Finally, the methods to enhance the impingement jet cooling are presented. These methods focus on retrofitting the nozzle and target surface. The combination of impingement jet cooling with other methods, such as effusion cooling, rib roughened surface, is important development direction in combustor liner in the future.

Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang

An experimental study was performed in a confined circular single jet impingement. The effect of jet Reynolds number, nozzle-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. Flow visualization was made to broaden our fundamental understanding of the physical process of the type of flow. Transition and turbulent regimes are identified. The local heat transfer coefficient along the surface is measured and correlation of the stagnation point Nusselt number are presented and discussed.


Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


2002 ◽  
Vol 68 (669) ◽  
pp. 1523-1530
Author(s):  
Masafumi HIROTA ◽  
Hiroshi NAKAYAMA ◽  
Lei CAI ◽  
Hideomi FUJITA ◽  
Tatsuhito KATOH ◽  
...  

Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


Author(s):  
D. Chakraborty ◽  
G. Biswas ◽  
P. K. Panigrahi

A numerical investigation was carried out to study the flow and heat transfer behavior of a vertical circular tube, which is situated between two annular fins in cross-flow. The flow structure of the limiting streamlines on the surface of the circular tube and the annular fins was analysed. A finite volume method was employed to solve the Navier-Stokes and energy equations. The numerical results pertaining to heat transfer and flow characteristics were compared with the available experimental results. The following salient features were observed in this configuration. A horseshoe vortex system was formed at the junction of the stagnation line of the circular tube and the annular fin. The separation took place at the rear of the tube. The influence of the horseshoe vortices on local heat transfer was substantial. The ratio of the axial gap between two annular fins (L) to the radial protrusion length of the annular fin (LR) was identified as an important parameter. The flow and heat transfer results were presented for different L/LR ratios for a Reynolds number of 1000.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Sebastian Spring ◽  
Diane Lauffer ◽  
Bernhard Weigand ◽  
Matthias Hase

A combined experimental and numerical investigation of the heat transfer characteristics inside an impingement cooled combustor liner heat shield has been conducted. Due to the complexity and irregularity of heat shield configurations, standard correlations for regular impingement fields are insufficient and detailed investigations of local heat transfer enhancement are required. The experiments were carried out in a perspex model of the heat shield using a transient liquid crystal method. Scaling of the model allowed to achieve jet Reynolds numbers of up to Rej=34,000 without compressibility effects. The local air temperature was measured at several positions within the model to account for an exact evaluation of the heat transfer coefficient. Analysis focused on the local heat transfer distribution along the heat shield target plate, side rims, and central bolt recess. The results were compared with values predicted by a standard correlation for a regular impingement array. The comparison exhibited large differences. While local values were up to three times larger than the reference value, the average heat transfer coefficient was approximately 25% lower. This emphasized that standard correlations are not suitable for the design of complex impingement cooling pattern. For thermal optimization the detailed knowledge of the local variation of the heat transfer coefficient is essential. From the present configuration, some concepts for possible optimization were derived. Complementary numerical simulations were carried out using the commercial computational fluid dynamics (CFD) code ANSYS CFX. The motivation was to evaluate whether CFD can be used as an engineering design tool in the optimization of the heat shield configuration. For this, a validation of the numerical results was required, which for the present configuration was achieved by determining the degree of accuracy to which the measured heat transfer rates could be computed. The predictions showed good agreement with the experimental results, both for the local Nusselt number distributions as well as for averaged values. Some overprediction occurred in the stagnation regions, however, the impact on overall heat transfer coefficients was low and average deviations between numerics and experiments were in the order of only 5–20%. The numerical investigation showed that contemporary CFD codes can be used as suitable means in the thermal design process.


2004 ◽  
Vol 127 (3) ◽  
pp. 532-544 ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Deborah A. Kaminski

Measurements of the local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets are presented. The test rig is designed to simulate impingement with crossflow in one direction. Jet angle is varied between 30, 60, and 90deg as measured from the target surface, which is either smooth or randomly roughened. Liquid crystal video thermography is used to capture surface temperature data at five different jet Reynolds numbers ranging between 15,000 and 35,000. The effect of jet angle, Reynolds number, gap, and surface roughness on heat transfer and pressure loss is determined along with the various interactions among these parameters.


2000 ◽  
Vol 123 (1) ◽  
pp. 39-50 ◽  
Author(s):  
G. J. Hwang ◽  
S. C. Tzeng ◽  
C. P. Mao ◽  
C. Y. Soong

The present work is concerned with experimental investigation of the convective heat transfer in a radially rotating four-pass serpentine channel. Two types of staggered half-V rib turbulators are considered to examine their effects on heat transfer enhancement. The coolant air is pressurized and pre-cooled to compensate for the low rotating rate and low temperature or density difference in key parameters of thermal and flow characteristics. The geometric dimensions are fixed, whereas the ranges of the thermal and flow parameters in the present measurements are 20,000⩽Re⩽40,000,0⩽Ro⩽0.21, and Gr/Re2∼O10−2. The present results disclose the effects of the pressurized flow, rib arrangement, channel rotation, and centrifugal buoyancy on the local heat transfer in each passage of the channel. Finally, the present data are fitted on correlation equations for evaluation of local heat transfer in the rotating four-pass ribbed channel configurations considered.


Author(s):  
Christopher G. Cvetkovski ◽  
Hoda S. Mozaffari ◽  
Stanley Reitsma ◽  
Tirupati Bolisetti ◽  
David S.-K. Ting

Vertical ground source heat pumps operate by pumping a heat transfer fluid through a pipe buried in the ground. There is a U-Bend at its deepest point to return the fluid to the surface. Incidentally, the U-Bend does more than packing the extensive length of the heat transferring conduit within a single compact borehole. Large flow structures called Dean’s vortices are generated in the bend and these, along with the resulting turbulence produced, are known to significantly enhance the heat transfer processes, and hence, shorten the required length. This study examines the specific roles of Reynolds and Dean numbers on the flow structure and the resulting heat transfer in a pipe with a U-Bend. Water flowing in a pipe without and with heated wall was simulated using FLUENT. The model was verified based on available data in the literature. The efficacy of the local heat transfer rate along the pipe was cast with respect to the subtle changes in the flow characteristics under varying Reynolds number and Dean number.


Sign in / Sign up

Export Citation Format

Share Document