Unsteady Aerodynamics on Multi-Passage LP Last Stage Induced by Flow Separation Under Low Load Flow

Author(s):  
Jing Zhang ◽  
Danmei Xie ◽  
Fan Wu ◽  
Haifen Du ◽  
Wei Chen

Abstract With the rapid development of renewable energy generation, the requirement for operational flexibility of power plants has increased. This has led to steam turbine operating frequently at low load flow conditions. This paper focuses on the investigation of unsteady aerodynamic excitation in the last stage of LP under low load flow, which was conducted by assuming one single passage, to provide detailed flow information for optimization design. We present a numerical investigation of unsteady pressure forces on Multi-passage LP last blade rows caused by flow separation under low load flow. The flow field of the turbine was calculated by transient 3D computational fluid dynamic (ANSYS CFX16.0). The results indicate the vortex strength induced by high incidence angle under low load flow having the characteristic of spatial non-uniformity and time non-uniformity. We found that the unsteady pressure forces on the rotor are significantly influenced by the separation vortex and have different phase pressure fluctuation between neighboring two rotor blades. The variation in the forces indicates that the neighboring rotor blades experience a load imbalance at every time step which may results in oscillation in the last long moving blades. In particular, the tip vortex plays a crucial part in unsteady aerodynamics.

Author(s):  
Ping Hu ◽  
Tong Lin ◽  
Rui Yang ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

Abstract It is common that steam turbine works at different operating points, especially under low load conditions, to cater to complex and varied demands for power generation recently. Considering the long and thin shape of last stage moving blades (LSMBs) in a low-pressure (LP) steam turbine, there are many challenges to design a suitable case which balances global efficiency against sufficient structure strength when suffering excitations at low load operating points. In present work, the aim is to extract specific aerodynamic excitations and recognize their distribution and propagation features. Firstly, steady 3D computational fluid dynamics (CFD) calculations are simulated at 25GV and 17GV (25% and 17% of design mass flow conditions) and corresponding unsteady calculations are performed with enough rotor revolutions to obtain integrated flow periodicities. Unsteady pressure signals near tip region of LSMBs are monitored circumferentially in both static and rotating coordinates. The fast Fourier transformation (FFT) results of unsteady pressure signals show that there are broadband humps with small disturbance amplitudes in low frequency spectrum at 25GV, however, a sharp spike is shown in low frequency spectrum at 17GV. Further, circumferential mode decomposition (CMD) method has been applied to distinguish different fluctuations in frequency and the mode numbers and circumferential propagating pace of which have been obtained. Finally, dynamic mode decomposition (DMD) method has been performed to describe detailed mode shapes of featured flow perturbances both in static and rotating coordinate system. These analyses indicate that at 25GV, a band of unsteady responses with very low amplitude was noted which has some features similar to rotating instability (RI). However, distribution and propagation features of flow unsteadiness at 17GV are in good agreement with rotating stall (RS) in compressor.


Author(s):  
Naoki Shibukawa ◽  
Yoshifumi Iwasaki ◽  
Mitsunori Watanabe

Experimental investigations with a six stage real scale low pressure steam turbine operated at a very low load conditions are presented in this paper. Although the tested 35 inch last stage blades are circumferentially coupled at both tip and mid span with an intention to reduce the vibration stress, still its increase was observed at extremely low load condition. The pressure fluctuations were measured by several silicon diaphragm sensors which were mounted on both inner and outer casings of the stator inlet, exit and blade exit position. The measurement of the vibration stress was performed by strain gauges on several blades. The power spectra of unsteady pressures were precisely investigated considering both their location and steam flow condition. And the results implied that huge reverse flow and re-circulation started in the same location as a blade-to-blade CFD predicted. In terms of the correlation between vibration stress and the flow feature, the pressure fluctuation around the blade tip produces dominant effects on the vibration stress. The unsteady pressure frequency were also investigated and compared with those of the blade resonance and rotational speed. Basic trends observed in the results are similar to what other researchers reported, and on top of that, the continuous trends of pressure fluctuation and blade vibration stress were systematically investigated. Even the wall pressure, not the pressure on blade surface, showed the effective fluctuations which excited the several nodes of natural frequencies of the last stage blade. A series of FFT of fluid force by a full annulus quasi-steady CFD simulation seems to predict dominant mode of the excitation which account for the behavior of vibration stresses. The mechanism of the rapid stress increase was examined by considering CFD results and measured unsteady pressure data together. As the test facility takes a responsibility as an independent power producer, the tests were conducted in real plant operations which include multi stage effects, inlet distortions, Reynolds Number effect and so on. The obtained data and the particular indicator of vibration stress increase can be used as a part of design tool validation with neither aerodynamic nor mechanical corrections.


Author(s):  
B. R. Haller ◽  
T. S. Rice ◽  
R. Sigg

In Steam Turbines, under low flow conditions, the flow structure on the long last stage blades is complex. The rotor blades create outward radial flow. Recirculations are setup near the tip in the gap between the fixed and moving blades, and near the hub downstream of the moving blade. The blade carries negative loading and encounters gross flow separations. In this environment, fluctuations in pressure are detected rotating at about half of the rotor speed. Some similarities exist with rotating stall, as found in compressors. In the validation of a new blade design, checks are therefore included to ensure that the rotating excitation does not pass over a natural frequency of the blading. In turn, this can reduce the available design space. A less restrictive approach is to consider alleviation techniques. A promising candidate is a scheme where steam jets are directed into the flow, onto the LSB, from the outer boundary. Jets have been introduced and tested on a 1/3rd scale multistage steam turbine. The test turbine is both aerodynamically and mechanically representative of a full size machine. The blowing scheme was shown to reduce and then practically eliminate the rotating pressure pattern. 3D CFD computations reveal the major influence of the jets. The solution is elegant because it does not lead to loss of efficiency or design space.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


Author(s):  
Bowen Ding ◽  
Liping Xu ◽  
Jiandao Yang ◽  
Rui Yang ◽  
Yuejin Dai

Modern large steam turbines for power generation are required to operate much more flexibly than ever before, due to the increasing use of intermittent renewable energy sources such as solar and wind. This has posed great challenges to the design of LP steam turbine exhaust systems, which are critical to recovering the leaving energy that is otherwise lost. In previous studies, the design had been focused on the exhaust diffuser with or without the collector. Although the interaction between the last stage and the exhaust hood has been identified for a long time, little attention has been paid to the last stage blading in the exhaust system’s design process, when the machine frequently operates at part-load conditions. This study focuses on the design of LP exhaust systems considering both the last stage and the exhaust diffuser, over a wide operating range. A 1/10th scale air test rig was built to validate the CFD tool for flow conditions representative of an actual machine at part-load conditions, characterised by highly swirling flows entering the diffuser. A numerical parametric study was performed to investigate the effect of both the diffuser geometry variation and restaggering the last stage rotor blades. Restaggering the rotor blades was found to be an effective way to control the level of leaving energy, as well as the flow conditions at the diffuser inlet, which influence the diffuser’s capability to recover the leaving energy. The benefits from diffuser resizing and rotor blade restaggering were shown to be relatively independent of each other, which suggests the two components can be designed separately. Last, the potentials of performance improvement by considering both the last stage rotor restaggering and the diffuser resizing were demonstrated by an exemplary design, which predicted an increase in the last stage power output of at least 1.5% for a typical 1000MW plant that mostly operates at part-load conditions.


2021 ◽  
Author(s):  
Edwin Kipchirchir ◽  
Manh Hung Do ◽  
Jackson Githu Njiri ◽  
Dirk Söffker

Abstract. Variability of wind profiles in both space and time is responsible for fatigue loading in wind turbine components. Advanced control methods for mitigating structural loading in these components have been proposed in previous works. These also incorporate other objectives like speed and power regulation for above-rated wind speed operation. In recent years, lifetime control and extension strategies have been proposed to guaranty power supply and operational reliability of wind turbines. These control strategies typically rely on a fatigue load evaluation criteria to determine the consumed lifetime of these components, subsequently varying the control set-point to guaranty a desired lifetime of the components. Most of these methods focus on controlling the lifetime of specific structural components of a wind turbine, typically the rotor blade or tower. Additionally, controllers are often designed to be valid about specific operating points, hence exhibit deteriorating performance in varying operating conditions. Therefore, they are not able to guaranty a desired lifetime in varying wind conditions. In this paper an adaptive lifetime control strategy is proposed for controlled ageing of rotor blades to guaranty a desired lifetime, while considering damage accumulation level in the tower. The method relies on an online structural health monitoring system to vary the lifetime controller gains based on a State of Health (SoH) measure by considering the desired lifetime at every time-step. For demonstration, a 1.5 MW National Renewable Energy Laboratory (NREL) reference wind turbine is used. The proposed adaptive lifetime controller regulates structural loading in the rotor blades to guaranty a predefined damage level at the desired lifetime without sacrificing on the speed regulation performance of the wind turbine. Additionally, significant reduction in the tower fatigue damage is observed.


2019 ◽  
Vol 35 (2) ◽  
pp. 249-258
Author(s):  
Tao Ding ◽  
Lumeng Fang ◽  
Ji-Qin Ni ◽  
Zhengxiang Shi ◽  
Baoming Li ◽  
...  

Abstract.With the rapid development of modern agriculture facilities, agricultural fans have been widely used due to their low pressure and large airflow characteristics. However, existing agricultural fans have large flow losses and low energy efficiencies. To increase the airflow and energy efficiency of these fans, optimization designs based on skewed and swept blades were carried out. First, a “DDZ” agricultural fan (a leaf model agricultural fan commonly used in China) was chosen as the archetype fan. Its performance curves and flow field distribution were obtained by performance testing and numerical simulation. Second, the stack lines of the skewed blade and swept blade were designed based on the original blade, 3 skewed blade parameters (skewed angle a, x direction control parameter kx, and y direction control parameter ky), and 3 swept blade design parameters (swept angle ß, z direction control parameter kz, and r direction control parameter kr). Finally, the optimal skewed blade design parameters (a = 16.8°, kx = 1.65, and ky = 0.5) and optimal swept blade design parameters (ß = 10.6°, kz = -0.33, and kr =0.6) were obtained using numerical simulations and orthogonal testing, which is a response surface method. The numerical simulation results showed that the airflow and energy efficiency ratios of the optimal skewed blade fan were increased by 4.3% and 20.5%, and those of the optimal swept blade fan were increased by 4.5% and 15.4%, respectively, in comparison with those of the original fan. The flow fields showed that the optimal skewed blade mainly reduced the radial flow at the blade root and the leakage flow. The optimal swept blade mainly reduced the leakage flow by changing the distribution of the static pressure on the blade surfaces. Keywords: Agricultural fan, Skewed-Swept blade, Numerical simulation, Optimization.


Author(s):  
Vaclav Slama ◽  
Bartolomej Rudas ◽  
Ales Macalka ◽  
Jiri Ira ◽  
Antonin Zivny

Abstract An advanced in-house procedure, which is based on a commercial numerical code, to predict a potential danger of unstalled flutter has been developed and validated. This procedure using a one way decoupled method and a full-scale time-marching 3D viscous model in order to obtain the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations in the time domain thus calculate an aerodynamic work and a damping ratio is used as an essential tool for developing ultra-long last stage rotor blades in low pressure turbine parts for modern steam turbines with a large operating range and an enhanced efficiency. An example is shown on a development of the last stage blade for high backpressures.


Author(s):  
Antonio Mambro ◽  
Francesco Congiu ◽  
Francesco Piraccini

Abstract The continuous increase of variable renewable energy and fuel cost requires steam turbine power plants to operate with high flexibility. Furthermore, the reduction in electricity price is forcing many existing and new district heating power plants to further optimize the heat production to maintain a sustainable business. This situation leads to low pressure steam turbines running at very low volume flow for an extended time. In this work, a case study of an existing 30 MWel district heating power plant located in Europe is presented. The customer request was the removal of the steam turbine last two stages along with the condenser to maximize steam delivery for district heating operations. However, based on the experience gained by GE on low load during the last years, the same heat production has been guaranteed without any significant impact on the existing unit, excluding any major modification of the plant layout such as last stage blading and condenser removal. Making use of the latest low flow modeling, the minimum cooling flow through the low-pressure turbine has been reduced by more than 90% compared to the existing unit. Optimization of the hood spray system and logic will reduce trailing edge erosion during low load operation leading to a significant extension in the last stage blade lifetime. These modifications, commercialized by GE as the Advanced Low Load Package (ALLP), provide a cheap, flexible and effective solution for the customer. With today’s knowledge, GE has the capability to guarantee low load operation minimizing the mass flow through the low-pressure turbine to the minimum required for safe operation. As a benefit to the customer, this option allows a gain in operational income of about 1.5 M€ per year.


Sign in / Sign up

Export Citation Format

Share Document