Rig Testing of the Operability of a Transonic Compressor Blade of an Industrial Gas Turbine

Author(s):  
Hyunsu Kang ◽  
Sungjong Ahn ◽  
Kyusic Hwang ◽  
Justin Bock ◽  
Jeongseek Kang ◽  
...  

Abstract This paper describes the flow and vibrations measured in a 1.5-stage transonic research compressor tested at the Notre Dame Turbomachinery Laboratory. The compressor is a sub-scale version of a large-scale industrial gas turbine. The experiment measured the compressor performance and investigated the operability issues of stall and flow-induced blade vibrations due to buffet and flutter. The buffet was investigated at full-speed with fully-closed inlet guide vanes; the full-speed, no-load condition of gas turbines used for power generation. The flutter was investigated at part-speed conditions with partially closed guide vanes; the part-power condition where stall flutter typically occurs for aero-engines. At both of these conditions the blades operate with high incidence and moderate velocity, which can result in flow-induced vibrations. Aero-elastic simulations were performed to predict the flutter boundary. The flutter analysis predicted positive aerodynamic damping near the operating line, and a decrease in aerodynamic damping as the stall boundary was approached. No flutter was observed in the stable operating range of the compressor. The experimental campaign used blade tip timing to measure the vibrations and unsteady pressure transducers above the compressor blade. These two types of data were correlated to better understand the drivers of vibration. The paper describes the behavior of the aerodynamic drivers of buffet and flutter and the resulting vibration.

Author(s):  
Glenn McAndrews

Electric starter development programs have been the subject of ASME technical papers for over two decades. Offering significant advantages over hydraulic or pneumatic starters, electric starters are now poised to be the preferred choice amongst gas turbine customers. That they are not now the dominant starter in the field after decades of investment and experimentation is attributable to many factors. As with any new technology, progress is often unsteady, depending on budgets, market conditions, customer buy-in, etc. Additionally, technological advances in the parent technologies, in this case electric motors, can abruptly and rapidly change, further disturbing the best laid introduction plans. It is therefore not too surprising that only recently, is the industry beginning to see the deployment of electric starters on production gas turbines. The earliest adoption occurred on smaller gas turbine units, generally less than 10 MW in power. More recently, gas turbines greater than 10 MWs are being sold with electric starters. The authors expect that regardless of their size or fuel supply, most all future gas turbine users will opt for electric starters. This may even include the “larger” frame machines with power greater than 100 MW. Starting with some past history, this paper will not only summarize past development efforts, it will attempt to examine the current deployment of electric starters throughout the marine and industrial gas turbine landscapes. The large-scale acceptance of electric start systems for both new production and retrofit will depend on the favorable cost/benefit assessment when weighing both first cost and life cycle cost. The current and intense activity in electric vehicle applications is giving rise to even more power dense motors. The paper will look at some of these exciting applications, the installed products, and the technologies behind the products. To what extent these new products may serve the needs of the gas turbine community will be the central question this paper attempts to answer.


Author(s):  
Kurt J. Bauermeister ◽  
Bernhard Schetter ◽  
Klaus D. Mohr

In cooperation between Siemens and MAN GHH an industrial gas turbine with an ISO rating of 9.2 5 MW was equipped with a dry low NOx combustion system. Using the hybrid burners of Siemens gas turbines, a new combustion chamber was developed for the gas turbine THM 1304 of MAN GHH. This gas turbine has two V-like arranged combustion chambers, which allow a redesign of the combustion chamber, without changing the remaining parts of the gas turbine and its casing. So it is possible as well, to fit present machines with new combustion chambers. The combustion chambers contain flame tubes of Siemens technology with ceramic tiles and the well proved hybrid burners. After calculation and design the air flow was examined in an isothermal flow model. Finally two prototypes of the combustion chamber mounted on a THM 1304 gas turbine were tested at the MAN GHH gas turbine test bed. Success came very quickly and the test runs are finished now. So for the first time the transfer of the well-known low emission values of the Siemens large scale gas turbines succeeded to an industrial gas turbine of the 10 MW class.


1983 ◽  
Vol 105 (3) ◽  
pp. 417-421 ◽  
Author(s):  
B. Becker ◽  
M. Kwasniewski ◽  
O. von Schwerdtner

With increasing mass flow and constant rotational speed of the single shaft gas turbine, the diameters and tip speeds of compressor and turbine blading have to be enlarged. A significant further increase in mass flow can be achieved with transonic compressor stages, as they have been in service in aero gas turbines for many years. For industrial applications, weight and stage pressure ratio are not nearly as important as efficiency. Therefore, different design criteria had to be applied, which led to a moderate front stage pressure ratio of 1.5 with a rotor tip inlet Mach number of 1.37 and a high solidity blading. In order to simulate the first three stages of a 200-MW gas turbine, a test compressor scaled by 1:5.4 was built and tested. These measurements confirmed the aerodynamic performance in the design point very well. The compressor map showed a satisfactory part speed behavior. These results prove that the single-shaft industrial gas turbine still has a high development potential with respect to power increase. Additionally, with the higher pressure ratio, the cycle efficiency will be improved considerably.


2021 ◽  
Author(s):  
Venkatesh Suriyanarayanan ◽  
Kentaro Suzuki ◽  
Mehdi Vahdati ◽  
Loic Salles ◽  
Quentin Rendu

Author(s):  
Tomoki Taniguchi ◽  
Ryoji Tamai ◽  
Yoshihiko Muto ◽  
Satoshi Takami ◽  
Ryozo Tanaka ◽  
...  

Kawasaki Heavy Industries, Ltd (KHI) has started a comprehensive program to further improve performance and availability of existing Kawasaki gas turbines. In the program, one of the Kawasaki’s existing gas turbine was selected from the broad product line and various kinds of technology were investigated and adopted to further improve its thermal performance and availability. The new technologies involve novel film cooling of turbine nozzles, advanced and large-scale numerical simulations, new thermal barrier coating. The thermal performance target is combined cycle efficiency of 51.6% and the target ramp rate is 20% load per minute. The program started in 2015 and engine testing has just started. In this paper, details of the program are described, focusing on design procedure.


Author(s):  
T. L. Ragland

After industrial gas turbines have been in production for some amount of time, there is often an opportunity to improve or “uprate” the engine’s output power or cycle efficiency or both. In most cases, the manufacturer would like to provide these uprates without compromising the proven reliability and durability of the product. Further, the manufacturer would like the development of this “Uprate” to be low cost, low risk and result in an improvement in “customer value” over that of the original design. This paper describes several options available for enhancing the performance of an existing industrial gas turbine engine and discusses the implications for each option. Advantages and disadvantages of each option are given along with considerations that should be taken into account in selecting one option over another. Specific options discussed include dimensional scaling, improving component efficiencies, increasing massflow, compressor zero staging, increasing firing temperature (thermal uprate), adding a recuperator, increasing cycle pressure ratio, and converting to a single shaft design. The implications on output power, cycle efficiency, off-design performance engine life or time between overhaul (TBO), engine cost, development time and cost, auxiliary requirements and product support issues are discussed. Several examples are provided where these options have been successfully implemented in industrial gas turbine engines.


Author(s):  
Xueyou Wen ◽  
Jiguo Zou ◽  
Zheng Fu ◽  
Shikang Yu ◽  
Lingbo Li

Steam-injected gas turbines have a multitude of advantages, but they suffer from the inability to recover precious demineralized water. The present paper describes the test conditions and results of steam injection along with an attempt to achieve water recovery, which were obtained through a series of tests conducted on a S1A-02 small-sized industrial gas turbine. A water recovery device incorporating a compact finned spiral plate cooling condenser equipped with filter screens has been designed for the said gas turbine and a 100% water recovery (based on the design point) was attained.


Author(s):  
Thomas Wagner ◽  
Robert J. Burke

The desire to maintain power plant profitability, combined with current market fuel gas pricing is forcing power generation companies to constantly look for ways to keep their industrial gas turbine units operating at the highest possible efficiency. Gas Turbines Operation requires the compression of very large quantities of air that is mixed with fuel, ignited and directed into a turbine to produce torque for purposes ranging from power generation to mechanical drive of pumping systems to thrust for air craft propulsion. The compression of the air for this process typically uses 60% of the required base energy. Therefore management of the compression process efficiency is very important to maintain overall cycle efficiency. Since fouling of turbine compressors is almost unavoidable, even with modern air filter treatment, and over time results in lower efficiency and output, compressor cleaning is required to maintain gas turbine efficiency.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


2021 ◽  
Author(s):  
Davendu Y. Kulkarni ◽  
Gan Lu ◽  
Feng Wang ◽  
Luca di Mare

Abstract The gas turbine engine design involves multi-disciplinary, multi-fidelity iterative design-analysis processes. These highly intertwined processes are nowadays incorporated in automated design frameworks to facilitate high-fidelity, fully coupled, large-scale simulations. The most tedious and time-consuming step in such simulations is the construction of a common geometry database that ensures geometry consistency at every step of the design iteration, is accessible to multi-disciplinary solvers and allows system-level analysis. This paper presents a novel design-intent-driven geometry modelling environment that is based on a top-down feature-based geometry model generation method. In the proposed object-oriented environment, each feature entity possesses a separate identity, denotes an abstract geometry, and carries a set of characteristics. These geometry features are organised in a turbomachinery feature taxonomy. The engine geometry is represented by a tree-like logical structure of geometry features, wherein abstract features outline the engine architecture, while the detailed geometry is defined by lower-level features. This top-down flexible arrangement of feature-tree enables the design intent to be preserved throughout the design process, allows the design to be modified freely and supports the design intent variations to be propagated throughout the geometry automatically. The application of the proposed feature-based geometry modelling environment is demonstrated by generating a whole-engine computational geometry. This geometry modelling environment provides an efficient means of rapidly populating complex turbomachinery assemblies. The generated engine geometry is fully scalable, easily modifiable and is re-usable for generating the geometry models of new engines or their derivatives. This capability also enables fast multi-fidelity simulation and optimisation of various gas turbine systems.


Sign in / Sign up

Export Citation Format

Share Document