Load Influence on Hydrostatic Oil Film Journal Bearing Stiffness Characteristics

Author(s):  
Leonid Moroz ◽  
Leonid Romanenko ◽  
Roman Kochurov ◽  
Evgen Kashtanov

Abstract Hydrostatic bearings are widely used in industry, including aerospace and energy sectors. Hydrodynamic lubrication mechanism has been well studied analytically and experimentally and various types of bearings were developed to provide increasing operating speed, load capacity, stability and efficiency for modern rotating machines. Hydrostatically lubricated bearings have principal difference (in comparison with hydrodynamic bearings) and their characteristics have been an area of continued research. The goal of this work is to develop a robust algorithm, which can predict hydrodynamical characteristics and dynamic stiffness and damping coefficients of hybrid and hydrostatic bearings with increased accuracy and which can be used for engineering/design purposes. The developed approach is based on Reynold’s equations, where the unknown parameters are the rotor position and fluid pressure in recess pockets. Finite difference method in combination with the successive over-relaxation algorithm is used for a numerical solution of Reynold’s equations. Newton’s method is applied to solve the generated system of equations. Applying the developed approach, the effect of load influence on the hydrodynamical and the dynamic stiffness characteristics has been studied. Several hydrostatic bearing designs which are based on the published data were considered to compare the results calculated applying the approach with the experimental and theoretical data given in the literature. Performed study shows when journal eccentricity can’t be neglected while simulating hydrostatic bearing characteristics. Simulations also allow for analysis of how different design/geometrical parameters and initial conditions (supply pressure) influence bearing performance characteristics. The developed approach can be utilized as a practical tool which allows for the prediction of performance characteristics of hydrostatic bearing with increased accuracy.

1966 ◽  
Vol 8 (2) ◽  
pp. 152-161 ◽  
Author(s):  
G. P. Kearney

Master and slave systems utilize two types of hydrostatic bearing in order to provide high load capacity in conjunction with non-redundant location by rigid-film hydrostatic bearings. Master bearings are controlled both by applied thrust and by their clearance, and they also control the thrust in the slave bearings which act independently of their own clearances. A journal bearing is used to illustrate analysis of bearing systems, redundant locations, and master and slave systems. A general analysis of master and slave systems is given and a design procedure, advantages, fields of application, and design calculations for individual bearings are outlined in the text and appendixes.


Author(s):  
Timothy Dimond ◽  
David Barnes

Hydrostatic bearings are used in applications where surface speeds are low, or viscosities are insufficient to develop significant load capacity due to shear flow. They are also used in jacking applications for initial liftoff of rotors under low or no rotation conditions, especially for heavy rotors where significant babbitt damage would otherwise occur. Traditional hydrostatic bearing analyses assume isothermal lubricating flows. Analytical solutions also assume that the pressure in the pocket of the hydrostatic bearing is constant. This assumption is only approximately correct for low and zero operating speeds. Analytical solutions also assume that the runner and pad surfaces are parallel. The analytical solutions are not capable of capturing damage or misalignment effects. This paper describes a hydrodynamic analysis of a hydrostatic thrust bearing. The solution is based on a finite element solution to the generalized Reynolds equation. The finite element solution is applied in both the pocket and pad regions of the hydrostatic bearings. The analysis includes a flow loop balance that considers the effects of pressure losses in the lubricant supply piping, allowing for modeling of saturation effects in bearing load capacity. The flow loop balance for the lubrication supply is coupled with the bearing solution. This allows for pad loads to vary as a function of circumferential position in thrust bearings. The analysis was applied to the operation of a hydrostatic thrust bearing system for the HUSIR radio telescope at the Massachusetts Institute of Technology. Simplified models of pad damage and runner misalignment were considered in the analysis. The minimum film thickness and pressure profile was calculated. Runner misalignment reduced minimum film thickness by up to 80% when compared to a parallel runner under identical loading conditions. Runner damage equivalent to twice the nominal film thickness reduced the minimum film thickness by approximately 10%.


Author(s):  
Alireza Arab Solghar

The lattice Boltzmann method has superiority over conventional computational fluid dynamics methods, particularly for the flow simulations in complex geometries. In the present work, the performance of hydrodynamic lemon-bore (elliptical) journal bearings was investigated with the implementation of the lattice Boltzmann method. The steady-state laminar flow of a homogeneous oil was considered in the computations. A linear interpolation method was exploited to obtain the surface curvatures. The comparison of the results obtained from the proposed methodology with available literature data showed a satisfactory agreement. The effect of geometrical parameters on the hydrodynamic lubrication in an elliptical journal bearing was analyzed. It was found that the ellipticity ratio has profound effects on the bearing load capacity, oil flow rate and bearing power loss.


Author(s):  
M. Böhle ◽  
Y. Gu ◽  
A. Schimpf

Abstract The numerical prediction of load capacity, stiffness, power loss of hydrostatic journal bearings must be performed for technical applications. In this contribution hydrostatic bearings consisting of porous material are considered. Porous hydrostatic bearings have the advantage that no pressure erosion occurs and that the flow medium can be led homogenously to the gap between shaft and bearing. It is still a problem to design such bearings because the flow in the porous material must be taken into account. There is a simple flow model (SFM) available to calculate quickly the load capacity, stiffness, power loss. This model which is based on the assumption that the flow inside the porous material is axially symmetric works well provided that the eccentricity is small (dimensionless eccentricity e/h0 < 0.5). For large eccentricities — larger than e/h0 > 0.5 the axially symmetric assumption is too strong violated and the results for load capacity, stiffness become inaccurate. Therefore an improved model was developed which is described in the present contribution. This improved model couples the Reynolds equation for hydrodynamic lubrication (REHL) with Darcy Law as it had already been done for the aforementioned fast working SFM. The improved model is not based on the axially symmetric assumption but models the flow completely inside the porous material, i.e. Darcys Law is applied for the porous material without making any assumptions. By the application of the new model, its short name is Full Darcy’s Law (FDL) Model, bearings with high eccentricities can be designed. The application of Darcys Law leads to a Laplace equation for the static pressure distribution in the porous material which is coupled with the REHL. It is described how the resulting equation system is solved by a finite difference method. In this contribution the fast working SFM is described shortly again. The main emphasis lies on the introduction of the FDL-model which needs more computer resources for designing a porous bearing than the SFM. It is explained in detail how the coupling between Darcy Law (Laplace equation) and the REHL is realized. A comparison between the results of both models is shown and the differences are interpreted. Additionally, CFD results are used in order to validate the results of the FDL-model.


2003 ◽  
Vol 125 (4) ◽  
pp. 425-433 ◽  
Author(s):  
A. N. Suciu ◽  
T. Iwatsubo ◽  
M. Matsuda

This paper presents a theoretical investigation of a geometrically idealized artificial joint with micro-pocket-covered component and biphasic cartilage on the opposite articulating surface. The fluid that exudes from the biphasic cartilage fills and pressurizes the micro-pockets. In this way, a poro-elasto-hydrodynamic regime of lubrication is developed. Assuming that lower friction would result in lower adhesive wear, and neglecting the fatigue as well as the abrasive wear, the proposed bearing system hypothetically could reduce the amount of wear debris. Equations of the linear biphasic theory are applied for the confined and unconfined compression of the cartilage. The fluid pressure and the elastic deformation of the biphasic cartilage are explicitly presented. The effective and equilibrium friction coefficients are obtained for the particular configuration of this bearing system. The micro-pockets geometrical parameters (depth, radius, surface distribution and edge radius) must be established to reduce the local contact stresses, to assure low friction forces and to minimize the biphasic cartilage damage. The influence of the applied pressure, porosity of the micro-pocket-covered component, filling time, cartilage elasticity, permeability and porosity upon the micro-pockets depth is illustrated. Our results are based upon the previously published data for a biphasic cartilage.


Author(s):  
Xiaodong Yu ◽  
Yu Wang ◽  
Junfeng Wang ◽  
Wenkai Zhou ◽  
Hongwei Bi ◽  
...  

Background: Hydrostatic bearings have the advantages of strong bearing capacity, good stability, small friction coefficient and long life. The performance of liquid hydrostatic bearings directly affect the accuracy and efficiency of CNC machining equipment. The performance is conducive to the development of CNC machine tools towards high speed and heavy load, so it is necessary to sort out and summarize the existing research results. Objective: This study summarizes the current development status of hydrostatic bearings and explains the development trend of hydrostatic bearings. Methods: According to the recently published journal articles and patents, the recent experimental research on hydrostatic thrust bearings is summarized. This paper summarizes many factors that affect the performance of hydrostatic bearings, and discusses the causes of various factors on hydrostatic bearings. Finally, future research on hydrostatic bearings is presented. Results: The study discusses experimental methods, simulation processes, and experimental results. Conclusion: This study can produce dynamic and static pressure effects by changing the structure of the oil cavity of the hydrostatic bearing. This effect can make up for the static pressure loss. By improving the theoretical formula and mathematical model and proposing a new simulation method, the accuracy of the hydrostatic bearing simulation is satisfied; the future development trend of the hydrostatic bearing is proposed.


2005 ◽  
Vol 127 (3) ◽  
pp. 679-684 ◽  
Author(s):  
S. Charles ◽  
O. Bonneau ◽  
J. Fre^ne

The characteristics of hydrostatic bearings can be influenced by the compensating device they use, for example, a thin-walled orifice (diaphragm). The flow through the orifice is given by a law where an ad hoc discharge coefficient appears, and, in order to guarantee the characteristics of the hydrostatic bearing, this coefficient must be calibrated. The aim of this work is to provide an accurate estimation of the discharge coefficient under specific conditions. Therefore an experimental bench was designed and a numerical model was carried out. The results obtained then by the experimental and theoretical approach were compared with the values given by the literature. Finally, the influence of the discharge coefficient on the behavior of a thrust bearing is examined.


Author(s):  
C. Bagci ◽  
C. J. McClure ◽  
S. K. Rajavenkateswaran

Abstract The article investigates pocket bearings with contoured profiles of exponential forms on both surfaces inside and outside of the step boundary forming hydro-dynamic action surfaces, and develops optimum design data yielding efficient slider bearings with small pockets with higher load capacities than conventional pocket bearings. In the case of a pocket bearings, in addition to the Reynolds equation used for the regions inside and outside the pocket, the continuity equation along the pocket boundary is satisfied to form the complete model of the bearing. The optimum design data includes dimensionless load-, flow-, temperature rise-, power loss-, stiffness-, and the coefficient of friction factors. Incompressible lubricant with temperature dependent viscosity is considered. Detailed study of conventional pocket bearings with planar surfaces is included. Some optimum exponential pocket bearings yield up to 561 percent increase in load capacity as compared to the conventional tapered bearings.


Sign in / Sign up

Export Citation Format

Share Document