Analysis of Friction-Saturated Flutter Vibrations With a Fully-Coupled Frequency Domain Method

Author(s):  
Christian Berthold ◽  
Johann Gross ◽  
Christian Frey ◽  
Malte Krack

Abstract Flutter stability is a dominant design constraint of modern gas and steam turbines. Thus, flutter-tolerant designs are currently explored, where the resulting vibrations remain within acceptable bounds. In particular, friction damping has the potential to yield Limit Cycle Oscillations (LCOs) in the presence of a flutter instability. To predict such LCOs, it is the current practice to model the aerodynamic forces in terms of aerodynamic influence coefficients, derived for some normal modes of the linearized structural model and fixed oscillation frequency. However, this approach neglects that both the nonlinear contact interactions and the aerodynamic stiffness cause a change in the deflection shape and the frequency of the LCO. This, in turn, may have a substantial effect on the aerodynamic damping. The goal of this paper is to assess the technical importance of these neglected interactions. To this end, a state-of-the-art aero-elastic model of a low pressure turbine blade row is considered, undergoing nonlinear frictional contact interactions in the tip shroud interfaces. The LCOs are computed with a fully-coupled harmonic balance method, which iteratively computes the Fourier coefficients of structural deformation and conservative flow variables, as well as the a priori unknown frequency. The coupled algorithm was tested for various combinations of harmonics in both domains and found to provide excellent computational robustness and efficiency. Moreover, a refinement of the conventional energy method is developed and assessed, which accounts for both the nonlinear contact boundary conditions and the linearized aerodynamic influence. It is found that the conventional energy method may not predict a limit cycle oscillation at all while the novel approach presented here can. Furthermore the refined energy method provides deep understanding of the nonlinear aero-elastic interactions.

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Christian Berthold ◽  
Johann Gross ◽  
Christian Frey ◽  
Malte Krack

Abstract Flutter stability is a dominant design constraint of modern turbines. Thus, flutter-tolerant designs are currently explored, where the resulting vibrations remain within acceptable bounds. In particular, friction damping has the potential to yield limit cycle oscillations (LCOs) in the presence of a flutter instability. To predict such LCOs, it is the current practice to model the aerodynamic forces in terms of aerodynamic influence coefficients for a linearized structural model with fixed oscillation frequency. This approach neglects that both the nonlinear contact interactions and the aerodynamic stiffness cause a change in the deflection shape and the frequency of the LCO. This, in turn, may have a substantial effect on the aerodynamic damping. The goal of this paper is to assess the importance of these neglected interactions. To this end, a state-of-the-art aero-elastic model of a low pressure turbine blade row is considered, undergoing nonlinear frictional contact interactions in the tip shroud interfaces. The LCOs are computed with a fully coupled harmonic balance method, which iteratively computes the Fourier coefficients of structural deformation and conservative flow variables, as well as the a priori unknown frequency. The coupled algorithm was found to provide excellent computational robustness and efficiency. Moreover, a refinement of the conventional energy method is developed and assessed, which accounts for both the nonlinear contact boundary conditions and the linearized aerodynamic influence. It is found that the conventional energy method may not predict a limit cycle oscillation at all while the novel approach presented here can.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
E. P. Petrov

A frequency-domain method has been developed to predict and comprehensively analyze the limit-cycle flutter-induced vibrations in bladed disks and other structures with nonlinear contact interfaces. The method allows, for the first time, direct calculation of the limit-cycle amplitudes and frequencies as functions of contact interface parameters and aerodynamic characteristics using realistic large-scale finite element models of structures. The effects of the parameters of nonlinear contact interfaces on limit-cycle amplitudes and frequencies have been explored for major types of nonlinearities occurring in gas-turbine structures. New mechanisms of limiting the flutter-induced vibrations have been revealed and explained.


Author(s):  
E. P. Petrov

An efficient frequency-domain method is developed to calculate the sensitivity of multiharmonic amplitudes of the limit-cycle oscillations and their primary frequency to variation of the nonlinear contact interface parameters and aerodynamic characteristics. The method allows highly accurate and fast determination of the sensitivity coefficients together with the calculation of the limit-cycle amplitudes and frequencies using realistic large-scale finite element models of structures. The nonlinear contact interactions analysed include: friction contacts, unilateral interaction along normal direction at a contact interface, closing and opening clearances and interferences, cubic spring nonlinearity. The capabilities of the method are demonstrated on a set of test cases.


Author(s):  
E. P. Petrov

A frequency-domain method has been developed to predict and comprehensively analyse the limit-cycle flutter-induced vibrations in bladed discs and other structures with nonlinear contact interfaces. The method allows, for the first time, direct calculation of the limit-cycle amplitudes and frequencies as functions of contact interface parameters and aerodynamic characteristics using realistic large-scale finite element models of structures. The effects of the parameters of nonlinear contact interfaces on limit-cycle amplitudes and frequencies have been explored for major types of nonlinearities occurring in gasturbine structures. New mechanisms of limiting the flutter-induced vibrations have been revealed and explained.


Author(s):  
Adam Koscso ◽  
E. P. Petrov

Abstract One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.


2019 ◽  
Vol 56 (7) ◽  
pp. 970-982 ◽  
Author(s):  
Nuno Cristelo ◽  
Carlos Félix ◽  
Joaquim Figueiras

It is now accepted that current expeditious models for determining earth pressures on flexible underground structures under compacted layers do not include several technical nuances of the soil–structure interaction. Thus, these models are not capable of delivering an optimized design. The present paper compares the results from the well-known American Association of State Highway and Transportation Officials (AASHTO) model with two different numerical models — a user-friendly elastic model and a more robust finite element model — and with results retrieved from a full-scale monitoring of a concrete box culvert, 5.5 m high and 3.77 m width, over which a 15 m high embankment was built. This structure was instrumented selectively, over a period of almost 1 year, during which several parameters were recorded, including earth pressures and structural deformation. Results have shown that the two most significant drawbacks associated with the use of the AASHTO model are the inadequate evaluation of vertical pressure on the top slab and the coefficient of earth pressure, which results in a significant overestimation of the lateral pressures and, consequently, in an overall inefficient design of the structure.


2021 ◽  
Author(s):  
Christian Berthold ◽  
Johann Gro\xdf ◽  
Christian Frey ◽  
Malte Krack

Sign in / Sign up

Export Citation Format

Share Document