Prediction of Dynamic Behavior of a Single Shaft Gas Turbine Using NARX Models

2021 ◽  
Author(s):  
Hamid Asgari ◽  
Emmanuel Ory

Abstract Gas turbines are internal combustion engines widely used in industry as main source of power for aircrafts, turbo-generators, turbo-pumps and turbo-compressors. Modelling these engines can help to improve their design and manufacturing processes, as well as to facilitate their operability and maintenance. These eventually lead to manufacturing of gas turbines with lower costs and higher efficiency at the same time. The models may also be employed to unfold nonlinear dynamics of these systems. The aim of this study is to predict the dynamic behavior of a single shaft gas turbine by using open-loop and closed-loop NARX models, which are subsets of artificial neural networks. To set up these models, datasets of significant variables of the gas turbine are used for training, test and validation processes. For this purpose, a comprehensive code is developed in MATLAB programming environment. In addition to the open-loop model, a closed-loop model is set up for multi-step prediction. The results of this study demonstrate the capability of the NARX models in reliable prediction of gas turbines’ dynamic behaviors over different operational ranges.

2004 ◽  
Vol 126 (4) ◽  
pp. 770-785 ◽  
Author(s):  
Paolo Chiesa ◽  
Ennio Macchi

All major manufacturers of large size gas turbines are developing new techniques aimed at achieving net electric efficiency higher than 60% in combined cycle applications. An essential factor for this goal is the effective cooling of the hottest rows of the gas turbine. The present work investigates three different approaches to this problem: (i) the most conventional open-loop air cooling; (ii) the closed-loop steam cooling for vanes and rotor blades; (iii) the use of two independent closed-loop circuits: steam for stator vanes and air for rotor blades. Reference is made uniquely to large size, single shaft units and performance is estimated through an updated release of the thermodynamic code GS, developed at the Energy Department of Politecnico di Milano. A detailed presentation of the calculation method is given in the paper. Although many aspects (such as reliability, capital cost, environmental issues) which can affect gas turbine design were neglected, thermodynamic analysis showed that efficiency higher than 61% can be achieved in the frame of current, available technology.


Author(s):  
Paolo Chiesa ◽  
Ennio Macchi

All major manufacturers of large size gas turbines are developing new techniques aimed at achieving net electric efficiency higher than 60% in combined cycle applications. An essential factor for this goal is the effective cooling of the hottest rows of the gas turbine. The present work investigates three different approaches to this problem: (i) the most conventional open-loop air cooling; (ii) the closed-loop steam cooling for vanes and rotor blades; (iii) the use of two independent closed-loop circuits: steam for stator vanes and air for rotor blades. Reference is made uniquely to large size, single shaft units and performance is estimated through an updated release of the thermodynamic code GS, developed at the Energy Dept. of Politecnico di Milano. A detailed presentation of the calculation method is given in the paper. Although many aspects (such as reliability, capital cost, environmental issues) which can affect gas turbine design were neglected, thermodynamic analysis showed that efficiency higher than 61% can be achieved in the frame of current, available technology.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840098
Author(s):  
Yuan Li ◽  
Huifang Shen ◽  
Chao Xiong ◽  
Yaofei Han ◽  
Guofeng He

In order to eliminate the effect on the grid current caused by the background harmonic voltage and the reference signal on the grid connected multi-inverter, this paper adopts the double closed-loop feed-forward control strategy. This strategy is based on the inductor voltage and the grid-connected current, and the integrated control strategy of quasi-proportional resonance loop parallel to a specific harmonic compensation loop. Based on the closed-loop model of multiple inverters, the change curves of the transfer function of the two control strategies are compared with the feed-forward control and the composite proportional resonance. The two corresponding control methods are used to analyze the current quality of the multi-inverter impact. Finally, the MATLAB/Simulink simulation model is set up to verify the proposed control strategies. The simulation results show that the proposed method can achieve better tracking of the sinusoidal command signal at the fundamental frequency, and enhance the anti-interference ability of the system at the 3rd, 5th, and 7th harmonic frequency.


Author(s):  
Hilal Bahlawan ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Mauro Venturini

This paper documents the set-up and validation of nonlinear autoregressive exogenous (NARX) models of a heavy-duty single-shaft gas turbine. The considered gas turbine is a General Electric PG 9351FA located in Italy. The data used for model training are time series data sets of several different maneuvers taken experimentally during the start-up procedure and refer to cold, warm and hot start-up. The trained NARX models are used to predict other experimental data sets and comparisons are made among the outputs of the models and the corresponding measured data. Therefore, this paper addresses the challenge of setting up robust and reliable NARX models, by means of a sound selection of training data sets and a sensitivity analysis on the number of neurons. Moreover, a new performance function for the training process is defined to weigh more the most rapid transients. The final aim of this paper is the set-up of a powerful, easy-to-build and very accurate simulation tool which can be used for both control logic tuning and gas turbine diagnostics, characterized by good generalization capability.


Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


2018 ◽  
Vol 57 (49) ◽  
pp. 16795-16808
Author(s):  
Julián Cabrera-Ruiz ◽  
César Ramírez-Márquez ◽  
Shinji Hasebe ◽  
Salvador Hernández ◽  
J. Rafael Alcántara Avila

2002 ◽  
Vol 128 (3) ◽  
pp. 506-517 ◽  
Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A high-fidelity real-time simulation code based on a lumped, nonlinear representation of gas turbine components is presented. The code is a general-purpose simulation software environment useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of gas turbine engines. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft aero-derivative industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


2019 ◽  
Vol 36 (2) ◽  
pp. 185-194 ◽  
Author(s):  
I. Yazar ◽  
F. Caliskan ◽  
R. Vepa

Abstract In this paper the application of model predictive control (MPC) to a two-mode model of the dynamics of the combustion process is considered. It is shown that the MPC by itself does not stabilize the combustor and the control gains obtained by applying the MPC algorithms need to be optimized further to ensure that the phase difference between the two modes is also stable. The results of applying the algorithm are compared with the open loop model amplitude responses and to the closed loop responses obtained by the application of a direct adaptive control algorithm. It is shown that the MPC coupled with the cost parameter optimisation proposed in the paper, always guarantees the closed loop stability, a feature that may not always be possible with an adaptive implementations.


SIMULATION ◽  
2019 ◽  
Vol 95 (11) ◽  
pp. 1069-1084 ◽  
Author(s):  
Rui Yan ◽  
Bo Yan

Energy saving and environmental protection are important issues of today. Concerning the environmental and social need to increase the utilization of used products, this paper introduces two remanufacturing reverse logistics (RL) network models, namely, the open-loop model and the closed-loop model. In an open-loop RL system, used products are recovered by outside firms, while in a closed-loop RL system, they are returned to their original producers. The open-loop model features a location selection with two layers. For this model, a mixed-integer linear program (MILP) is built to minimize the total costs of the open-loop RL system, including the fixed cost, the freight between nodes, the operation cost of storage and remanufacturing centers, the penalty cost of unmet or remaining demand quantity, and the government-provided subsidy given to the enterprises that protect the environment. This MILP is solved using an adaptive genetic algorithm with MATLAB simulation. For a closed-loop RL network model, a special demand function considering the relationship between new and remanufactured products is developed. Remanufacturing rate, environmental awareness, service demand elasticity, value-added services, and their impacts on total profit of the closed-loop supply chain are analyzed. The closed-loop RL network model is proved effective through the analysis of a numerical example.


2017 ◽  
Vol 9 (4) ◽  
pp. 424-437 ◽  
Author(s):  
Dmytro Iurashev ◽  
Giovanni Campa ◽  
Vyacheslav V Anisimov ◽  
Ezio Cosatto

Currently, gas turbine manufacturers frequently face the problem of strong acoustic combustion-driven oscillations inside combustion chambers. These combustion instabilities can cause extensive wear and sometimes even catastrophic damage of combustion hardware. This requires prevention of combustion instabilities, which, in turn, requires reliable and fast predictive tools. We have developed a two-step method to find a set of operating parameters under which gas turbines can be operated without going into self-excited pressure oscillations. As the first step, an unsteady Reynolds-averaged Navier–Stokes simulation with the flame speed closure model implemented in the OpenFOAM® environment is performed to obtain the flame transfer function of the combustion set-up. As the second step time-domain simulations employing low-order network model implemented in Simulink® are executed. In this work, we apply the proposed method to the Beschaufelter RingSpalt test rig developed at the Technische Universität München. The sensitivity of thermoacoustic stability to the length of a combustion chamber, flame position, gain and phase of flame transfer function and outlet reflection coefficient are studied.


Sign in / Sign up

Export Citation Format

Share Document